Cargando…

Microbial biotechnology approaches to mitigating the deterioration of construction and heritage materials

Microorganisms are the main engines of elemental cycling in this planet and therefore have a profound impact on both organic and mineral substrates. As such, past and present human‐made structures and cultural heritage can be negatively affected by microbial activity. Processes such as bioweathering...

Descripción completa

Detalles Bibliográficos
Autores principales: Junier, Pilar, Joseph, Edith
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5609266/
https://www.ncbi.nlm.nih.gov/pubmed/28771996
http://dx.doi.org/10.1111/1751-7915.12795
Descripción
Sumario:Microorganisms are the main engines of elemental cycling in this planet and therefore have a profound impact on both organic and mineral substrates. As such, past and present human‐made structures and cultural heritage can be negatively affected by microbial activity. Processes such as bioweathering (rocks and minerals), biodeterioration (organic substrates) or biocorrosion (metals) participate to the degradation or structural damage of construction and heritage materials. This structural damage can cause major economic losses (e.g. replacement of cast‐iron pipes in water distribution networks), and in the case of heritage materials, the entire loss of invaluable objects or monuments. Even though one can regard the influence of microbial activity on construction and heritage materials as negative, remarkably, the same metabolic pathways involved in degradation can be exploited to increase the stability of these materials.