Cargando…
A customizable class of colloidal-quantum-dot spasers and plasmonic amplifiers
Colloidal quantum dots are robust, efficient, and tunable emitters now used in lighting, displays, and lasers. Consequently, when the spaser—a laser-like source of high-intensity, narrow-band surface plasmons—was first proposed, quantum dots were specified as the ideal plasmonic gain medium for over...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5609809/ https://www.ncbi.nlm.nih.gov/pubmed/28948219 http://dx.doi.org/10.1126/sciadv.1700688 |
_version_ | 1783265673459269632 |
---|---|
author | Kress, Stephan J. P. Cui, Jian Rohner, Patrik Kim, David K. Antolinez, Felipe V. Zaininger, Karl-Augustin Jayanti, Sriharsha V. Richner, Patrizia McPeak, Kevin M. Poulikakos, Dimos Norris, David J. |
author_facet | Kress, Stephan J. P. Cui, Jian Rohner, Patrik Kim, David K. Antolinez, Felipe V. Zaininger, Karl-Augustin Jayanti, Sriharsha V. Richner, Patrizia McPeak, Kevin M. Poulikakos, Dimos Norris, David J. |
author_sort | Kress, Stephan J. P. |
collection | PubMed |
description | Colloidal quantum dots are robust, efficient, and tunable emitters now used in lighting, displays, and lasers. Consequently, when the spaser—a laser-like source of high-intensity, narrow-band surface plasmons—was first proposed, quantum dots were specified as the ideal plasmonic gain medium for overcoming the significant intrinsic losses of plasmons. Many subsequent spasers, however, have required a single material to simultaneously provide gain and define the plasmonic cavity, a design unable to accommodate quantum dots and other colloidal nanomaterials. In addition, these and other designs have been ill suited for integration with other elements in a larger plasmonic circuit, limiting their use. We develop a more open architecture that decouples the gain medium from the cavity, leading to a versatile class of quantum dot–based spasers that allow controlled generation, extraction, and manipulation of plasmons. We first create aberration-corrected plasmonic cavities with high quality factors at desired locations on an ultrasmooth silver substrate. We then incorporate quantum dots into these cavities via electrohydrodynamic printing or drop-casting. Photoexcitation under ambient conditions generates monochromatic plasmons (0.65-nm linewidth at 630 nm, Q ~ 1000) above threshold. This signal is extracted, directed through an integrated amplifier, and focused at a nearby nanoscale tip, generating intense electromagnetic fields. More generally, our device platform can be straightforwardly deployed at different wavelengths, size scales, and geometries on large-area plasmonic chips for fundamental studies and applications. |
format | Online Article Text |
id | pubmed-5609809 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-56098092017-09-25 A customizable class of colloidal-quantum-dot spasers and plasmonic amplifiers Kress, Stephan J. P. Cui, Jian Rohner, Patrik Kim, David K. Antolinez, Felipe V. Zaininger, Karl-Augustin Jayanti, Sriharsha V. Richner, Patrizia McPeak, Kevin M. Poulikakos, Dimos Norris, David J. Sci Adv Research Articles Colloidal quantum dots are robust, efficient, and tunable emitters now used in lighting, displays, and lasers. Consequently, when the spaser—a laser-like source of high-intensity, narrow-band surface plasmons—was first proposed, quantum dots were specified as the ideal plasmonic gain medium for overcoming the significant intrinsic losses of plasmons. Many subsequent spasers, however, have required a single material to simultaneously provide gain and define the plasmonic cavity, a design unable to accommodate quantum dots and other colloidal nanomaterials. In addition, these and other designs have been ill suited for integration with other elements in a larger plasmonic circuit, limiting their use. We develop a more open architecture that decouples the gain medium from the cavity, leading to a versatile class of quantum dot–based spasers that allow controlled generation, extraction, and manipulation of plasmons. We first create aberration-corrected plasmonic cavities with high quality factors at desired locations on an ultrasmooth silver substrate. We then incorporate quantum dots into these cavities via electrohydrodynamic printing or drop-casting. Photoexcitation under ambient conditions generates monochromatic plasmons (0.65-nm linewidth at 630 nm, Q ~ 1000) above threshold. This signal is extracted, directed through an integrated amplifier, and focused at a nearby nanoscale tip, generating intense electromagnetic fields. More generally, our device platform can be straightforwardly deployed at different wavelengths, size scales, and geometries on large-area plasmonic chips for fundamental studies and applications. American Association for the Advancement of Science 2017-09-22 /pmc/articles/PMC5609809/ /pubmed/28948219 http://dx.doi.org/10.1126/sciadv.1700688 Text en Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Research Articles Kress, Stephan J. P. Cui, Jian Rohner, Patrik Kim, David K. Antolinez, Felipe V. Zaininger, Karl-Augustin Jayanti, Sriharsha V. Richner, Patrizia McPeak, Kevin M. Poulikakos, Dimos Norris, David J. A customizable class of colloidal-quantum-dot spasers and plasmonic amplifiers |
title | A customizable class of colloidal-quantum-dot spasers and plasmonic amplifiers |
title_full | A customizable class of colloidal-quantum-dot spasers and plasmonic amplifiers |
title_fullStr | A customizable class of colloidal-quantum-dot spasers and plasmonic amplifiers |
title_full_unstemmed | A customizable class of colloidal-quantum-dot spasers and plasmonic amplifiers |
title_short | A customizable class of colloidal-quantum-dot spasers and plasmonic amplifiers |
title_sort | customizable class of colloidal-quantum-dot spasers and plasmonic amplifiers |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5609809/ https://www.ncbi.nlm.nih.gov/pubmed/28948219 http://dx.doi.org/10.1126/sciadv.1700688 |
work_keys_str_mv | AT kressstephanjp acustomizableclassofcolloidalquantumdotspasersandplasmonicamplifiers AT cuijian acustomizableclassofcolloidalquantumdotspasersandplasmonicamplifiers AT rohnerpatrik acustomizableclassofcolloidalquantumdotspasersandplasmonicamplifiers AT kimdavidk acustomizableclassofcolloidalquantumdotspasersandplasmonicamplifiers AT antolinezfelipev acustomizableclassofcolloidalquantumdotspasersandplasmonicamplifiers AT zainingerkarlaugustin acustomizableclassofcolloidalquantumdotspasersandplasmonicamplifiers AT jayantisriharshav acustomizableclassofcolloidalquantumdotspasersandplasmonicamplifiers AT richnerpatrizia acustomizableclassofcolloidalquantumdotspasersandplasmonicamplifiers AT mcpeakkevinm acustomizableclassofcolloidalquantumdotspasersandplasmonicamplifiers AT poulikakosdimos acustomizableclassofcolloidalquantumdotspasersandplasmonicamplifiers AT norrisdavidj acustomizableclassofcolloidalquantumdotspasersandplasmonicamplifiers AT kressstephanjp customizableclassofcolloidalquantumdotspasersandplasmonicamplifiers AT cuijian customizableclassofcolloidalquantumdotspasersandplasmonicamplifiers AT rohnerpatrik customizableclassofcolloidalquantumdotspasersandplasmonicamplifiers AT kimdavidk customizableclassofcolloidalquantumdotspasersandplasmonicamplifiers AT antolinezfelipev customizableclassofcolloidalquantumdotspasersandplasmonicamplifiers AT zainingerkarlaugustin customizableclassofcolloidalquantumdotspasersandplasmonicamplifiers AT jayantisriharshav customizableclassofcolloidalquantumdotspasersandplasmonicamplifiers AT richnerpatrizia customizableclassofcolloidalquantumdotspasersandplasmonicamplifiers AT mcpeakkevinm customizableclassofcolloidalquantumdotspasersandplasmonicamplifiers AT poulikakosdimos customizableclassofcolloidalquantumdotspasersandplasmonicamplifiers AT norrisdavidj customizableclassofcolloidalquantumdotspasersandplasmonicamplifiers |