Cargando…

A customizable class of colloidal-quantum-dot spasers and plasmonic amplifiers

Colloidal quantum dots are robust, efficient, and tunable emitters now used in lighting, displays, and lasers. Consequently, when the spaser—a laser-like source of high-intensity, narrow-band surface plasmons—was first proposed, quantum dots were specified as the ideal plasmonic gain medium for over...

Descripción completa

Detalles Bibliográficos
Autores principales: Kress, Stephan J. P., Cui, Jian, Rohner, Patrik, Kim, David K., Antolinez, Felipe V., Zaininger, Karl-Augustin, Jayanti, Sriharsha V., Richner, Patrizia, McPeak, Kevin M., Poulikakos, Dimos, Norris, David J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5609809/
https://www.ncbi.nlm.nih.gov/pubmed/28948219
http://dx.doi.org/10.1126/sciadv.1700688
_version_ 1783265673459269632
author Kress, Stephan J. P.
Cui, Jian
Rohner, Patrik
Kim, David K.
Antolinez, Felipe V.
Zaininger, Karl-Augustin
Jayanti, Sriharsha V.
Richner, Patrizia
McPeak, Kevin M.
Poulikakos, Dimos
Norris, David J.
author_facet Kress, Stephan J. P.
Cui, Jian
Rohner, Patrik
Kim, David K.
Antolinez, Felipe V.
Zaininger, Karl-Augustin
Jayanti, Sriharsha V.
Richner, Patrizia
McPeak, Kevin M.
Poulikakos, Dimos
Norris, David J.
author_sort Kress, Stephan J. P.
collection PubMed
description Colloidal quantum dots are robust, efficient, and tunable emitters now used in lighting, displays, and lasers. Consequently, when the spaser—a laser-like source of high-intensity, narrow-band surface plasmons—was first proposed, quantum dots were specified as the ideal plasmonic gain medium for overcoming the significant intrinsic losses of plasmons. Many subsequent spasers, however, have required a single material to simultaneously provide gain and define the plasmonic cavity, a design unable to accommodate quantum dots and other colloidal nanomaterials. In addition, these and other designs have been ill suited for integration with other elements in a larger plasmonic circuit, limiting their use. We develop a more open architecture that decouples the gain medium from the cavity, leading to a versatile class of quantum dot–based spasers that allow controlled generation, extraction, and manipulation of plasmons. We first create aberration-corrected plasmonic cavities with high quality factors at desired locations on an ultrasmooth silver substrate. We then incorporate quantum dots into these cavities via electrohydrodynamic printing or drop-casting. Photoexcitation under ambient conditions generates monochromatic plasmons (0.65-nm linewidth at 630 nm, Q ~ 1000) above threshold. This signal is extracted, directed through an integrated amplifier, and focused at a nearby nanoscale tip, generating intense electromagnetic fields. More generally, our device platform can be straightforwardly deployed at different wavelengths, size scales, and geometries on large-area plasmonic chips for fundamental studies and applications.
format Online
Article
Text
id pubmed-5609809
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-56098092017-09-25 A customizable class of colloidal-quantum-dot spasers and plasmonic amplifiers Kress, Stephan J. P. Cui, Jian Rohner, Patrik Kim, David K. Antolinez, Felipe V. Zaininger, Karl-Augustin Jayanti, Sriharsha V. Richner, Patrizia McPeak, Kevin M. Poulikakos, Dimos Norris, David J. Sci Adv Research Articles Colloidal quantum dots are robust, efficient, and tunable emitters now used in lighting, displays, and lasers. Consequently, when the spaser—a laser-like source of high-intensity, narrow-band surface plasmons—was first proposed, quantum dots were specified as the ideal plasmonic gain medium for overcoming the significant intrinsic losses of plasmons. Many subsequent spasers, however, have required a single material to simultaneously provide gain and define the plasmonic cavity, a design unable to accommodate quantum dots and other colloidal nanomaterials. In addition, these and other designs have been ill suited for integration with other elements in a larger plasmonic circuit, limiting their use. We develop a more open architecture that decouples the gain medium from the cavity, leading to a versatile class of quantum dot–based spasers that allow controlled generation, extraction, and manipulation of plasmons. We first create aberration-corrected plasmonic cavities with high quality factors at desired locations on an ultrasmooth silver substrate. We then incorporate quantum dots into these cavities via electrohydrodynamic printing or drop-casting. Photoexcitation under ambient conditions generates monochromatic plasmons (0.65-nm linewidth at 630 nm, Q ~ 1000) above threshold. This signal is extracted, directed through an integrated amplifier, and focused at a nearby nanoscale tip, generating intense electromagnetic fields. More generally, our device platform can be straightforwardly deployed at different wavelengths, size scales, and geometries on large-area plasmonic chips for fundamental studies and applications. American Association for the Advancement of Science 2017-09-22 /pmc/articles/PMC5609809/ /pubmed/28948219 http://dx.doi.org/10.1126/sciadv.1700688 Text en Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Kress, Stephan J. P.
Cui, Jian
Rohner, Patrik
Kim, David K.
Antolinez, Felipe V.
Zaininger, Karl-Augustin
Jayanti, Sriharsha V.
Richner, Patrizia
McPeak, Kevin M.
Poulikakos, Dimos
Norris, David J.
A customizable class of colloidal-quantum-dot spasers and plasmonic amplifiers
title A customizable class of colloidal-quantum-dot spasers and plasmonic amplifiers
title_full A customizable class of colloidal-quantum-dot spasers and plasmonic amplifiers
title_fullStr A customizable class of colloidal-quantum-dot spasers and plasmonic amplifiers
title_full_unstemmed A customizable class of colloidal-quantum-dot spasers and plasmonic amplifiers
title_short A customizable class of colloidal-quantum-dot spasers and plasmonic amplifiers
title_sort customizable class of colloidal-quantum-dot spasers and plasmonic amplifiers
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5609809/
https://www.ncbi.nlm.nih.gov/pubmed/28948219
http://dx.doi.org/10.1126/sciadv.1700688
work_keys_str_mv AT kressstephanjp acustomizableclassofcolloidalquantumdotspasersandplasmonicamplifiers
AT cuijian acustomizableclassofcolloidalquantumdotspasersandplasmonicamplifiers
AT rohnerpatrik acustomizableclassofcolloidalquantumdotspasersandplasmonicamplifiers
AT kimdavidk acustomizableclassofcolloidalquantumdotspasersandplasmonicamplifiers
AT antolinezfelipev acustomizableclassofcolloidalquantumdotspasersandplasmonicamplifiers
AT zainingerkarlaugustin acustomizableclassofcolloidalquantumdotspasersandplasmonicamplifiers
AT jayantisriharshav acustomizableclassofcolloidalquantumdotspasersandplasmonicamplifiers
AT richnerpatrizia acustomizableclassofcolloidalquantumdotspasersandplasmonicamplifiers
AT mcpeakkevinm acustomizableclassofcolloidalquantumdotspasersandplasmonicamplifiers
AT poulikakosdimos acustomizableclassofcolloidalquantumdotspasersandplasmonicamplifiers
AT norrisdavidj acustomizableclassofcolloidalquantumdotspasersandplasmonicamplifiers
AT kressstephanjp customizableclassofcolloidalquantumdotspasersandplasmonicamplifiers
AT cuijian customizableclassofcolloidalquantumdotspasersandplasmonicamplifiers
AT rohnerpatrik customizableclassofcolloidalquantumdotspasersandplasmonicamplifiers
AT kimdavidk customizableclassofcolloidalquantumdotspasersandplasmonicamplifiers
AT antolinezfelipev customizableclassofcolloidalquantumdotspasersandplasmonicamplifiers
AT zainingerkarlaugustin customizableclassofcolloidalquantumdotspasersandplasmonicamplifiers
AT jayantisriharshav customizableclassofcolloidalquantumdotspasersandplasmonicamplifiers
AT richnerpatrizia customizableclassofcolloidalquantumdotspasersandplasmonicamplifiers
AT mcpeakkevinm customizableclassofcolloidalquantumdotspasersandplasmonicamplifiers
AT poulikakosdimos customizableclassofcolloidalquantumdotspasersandplasmonicamplifiers
AT norrisdavidj customizableclassofcolloidalquantumdotspasersandplasmonicamplifiers