Cargando…
Suppression of CLC-3 chloride channel reduces the aggressiveness of glioma through inhibiting nuclear factor-κB pathway
CLC-3 chloride channel plays important roles on cell volume regulation, proliferation and migration in normal and cancer cells. Recent growing evidence supports a critical role of CLC-3 in glioma metastasis, however, the mechanism underlying is unclear. This study finds that CLC-3 is upregulated in...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5609961/ https://www.ncbi.nlm.nih.gov/pubmed/28969029 http://dx.doi.org/10.18632/oncotarget.19093 |
Sumario: | CLC-3 chloride channel plays important roles on cell volume regulation, proliferation and migration in normal and cancer cells. Recent growing evidence supports a critical role of CLC-3 in glioma metastasis, however, the mechanism underlying is unclear. This study finds that CLC-3 is upregulated in glioma tissues and positively correlated with WHO histological grade. Patients with high CLC-3 expression had an overall shorter survival time, whereas patients with low expression of CLC-3 had a better survival time. Silencing endogenous CLC-3 with ShCLC-3 adenovirus significantly decreases volume-regulated chloride currents, inhibits the nuclear translocation of p65 subunit of Nuclear Factor-κB (NF-κB), decreases transcriptional activity of NF-κB, reduces MMP-3 and MMP-9 expression and decreases glioma cell migration and invasion. Taken together, these results suggest CLC-3 promotes the aggressiveness of glioma at least in part through nuclear factor-κB pathway, and might be a novel prognostic biomarker and therapeutic target for glioma. |
---|