Cargando…
Efficient representation of quantum many-body states with deep neural networks
Part of the challenge for quantum many-body problems comes from the difficulty of representing large-scale quantum states, which in general requires an exponentially large number of parameters. Neural networks provide a powerful tool to represent quantum many-body states. An important open question...
Autores principales: | Gao, Xun, Duan, Lu-Ming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5610197/ https://www.ncbi.nlm.nih.gov/pubmed/28939812 http://dx.doi.org/10.1038/s41467-017-00705-2 |
Ejemplares similares
-
Constructing exact representations of quantum many-body systems with deep neural networks
por: Carleo, Giuseppe, et al.
Publicado: (2018) -
Stochastic representation of many-body quantum states
por: Atanasova, Hristiana, et al.
Publicado: (2023) -
Three-dimensional representation of the many-body quantum state
por: Holland, Peter
Publicado: (2018) -
Tensor-network approach for quantum metrology in many-body quantum systems
por: Chabuda, Krzysztof, et al.
Publicado: (2020) -
Quantum information meets quantum matter: from quantum entanglement to topological phases of many-body systems
por: Zeng, Bei, et al.
Publicado: (2019)