Cargando…
Estimating the intrinsic dimension of datasets by a minimal neighborhood information
Analyzing large volumes of high-dimensional data is an issue of fundamental importance in data science, molecular simulations and beyond. Several approaches work on the assumption that the important content of a dataset belongs to a manifold whose Intrinsic Dimension (ID) is much lower than the crud...
Autores principales: | Facco, Elena, d’Errico, Maria, Rodriguez, Alex, Laio, Alessandro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5610237/ https://www.ncbi.nlm.nih.gov/pubmed/28939866 http://dx.doi.org/10.1038/s41598-017-11873-y |
Ejemplares similares
-
The intrinsic dimension of protein sequence evolution
por: Facco, Elena, et al.
Publicado: (2019) -
Data segmentation based on the local intrinsic dimension
por: Allegra, Michele, et al.
Publicado: (2020) -
The generalized ratios intrinsic dimension estimator
por: Denti, Francesco, et al.
Publicado: (2022) -
Accurate Estimation of the Intrinsic Dimension Using Graph Distances: Unraveling the Geometric Complexity of Datasets
por: Granata, Daniele, et al.
Publicado: (2016) -
Scikit-Dimension: A Python Package for Intrinsic Dimension Estimation
por: Bac, Jonathan, et al.
Publicado: (2021)