Cargando…

Tunable invisibility cloaking by using isolated graphene-coated nanowires and dimers

We investigate, both theoretically and numerically, a graphene-coated nano-cylinder illuminated by a plane electromagnetic wave in the far-infrared range of frequencies. We have derived an analytical formula that enables fast evaluation of the spectral window with a substantial reduction in scatteri...

Descripción completa

Detalles Bibliográficos
Autores principales: Naserpour, Mahin, Zapata-Rodríguez, Carlos J., Vuković, Slobodan M., Pashaeiadl, Hamid, Belić, Milivoj R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5610338/
https://www.ncbi.nlm.nih.gov/pubmed/28939888
http://dx.doi.org/10.1038/s41598-017-12413-4
Descripción
Sumario:We investigate, both theoretically and numerically, a graphene-coated nano-cylinder illuminated by a plane electromagnetic wave in the far-infrared range of frequencies. We have derived an analytical formula that enables fast evaluation of the spectral window with a substantial reduction in scattering efficiency for a sufficiently thin cylinder. This polarization-dependent effect leads to tunable resonant invisibility that can be achieved via modification of graphene chemical potential monitored by the gate voltage. A multi-frequency cloaking mechanism based on dimer coated nanowires is also discussed in detail.