Cargando…
Classification of Fixed Point Network Dynamics from Multiple Node Timeseries Data
Fixed point networks are dynamic networks encoding stimuli via distinct output patterns. Although, such networks are common in neural systems, their structures are typically unknown or poorly characterized. It is thereby valuable to use a supervised approach for resolving how a network encodes input...
Autores principales: | Blaszka, David, Sanders, Elischa, Riffell, Jeffrey A., Shlizerman, Eli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5611511/ https://www.ncbi.nlm.nih.gov/pubmed/28979202 http://dx.doi.org/10.3389/fninf.2017.00058 |
Ejemplares similares
-
Data-driven inference of network connectivity for modeling the dynamics of neural codes in the insect antennal lobe
por: Shlizerman, Eli, et al.
Publicado: (2014) -
Classification-Based Prediction of Effective Connectivity Between Timeseries With a Realistic Cortical Network Model
por: Olivetti, Emanuele, et al.
Publicado: (2018) -
Modeling the dynamics of neural codes in the olfaction of the Manduca-sexta moth
por: Shlizerman, Eli, et al.
Publicado: (2012) -
Multistability and Long-Timescale Transients Encoded by Network Structure in a Model of C. elegans Connectome Dynamics
por: Kunert-Graf, James M., et al.
Publicado: (2017) -
Estimating anisotropy directly via neural timeseries
por: Fagerholm, Erik D., et al.
Publicado: (2022)