Cargando…
Volatile organic compounds emitted by Trichoderma species mediate plant growth
BACKGROUND: Many Trichoderma species are applied as biofungicides and biofertilizers to agricultural soils to enhance crop growth. These filamentous fungi have the ability to reduce plant diseases and promote plant growth and productivity through overlapping modes of action including induced systemi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5611631/ https://www.ncbi.nlm.nih.gov/pubmed/28955466 http://dx.doi.org/10.1186/s40694-016-0025-7 |
_version_ | 1783265988295262208 |
---|---|
author | Lee, Samantha Yap, Melanie Behringer, Gregory Hung, Richard Bennett, Joan W. |
author_facet | Lee, Samantha Yap, Melanie Behringer, Gregory Hung, Richard Bennett, Joan W. |
author_sort | Lee, Samantha |
collection | PubMed |
description | BACKGROUND: Many Trichoderma species are applied as biofungicides and biofertilizers to agricultural soils to enhance crop growth. These filamentous fungi have the ability to reduce plant diseases and promote plant growth and productivity through overlapping modes of action including induced systemic resistance, antibiosis, enhanced nutrient efficiency, and myco-parasitism. Trichoderma species are prolific producers of many small metabolites with antifungal, antibacterial, and anticancer properties. Volatile metabolites of Trichoderma also have the ability to induce resistance to plant pathogens leading to improved plant health. In this study, Arabidopsis plants were exposed to mixtures of volatile organic compounds (VOCs) emitted by growing cultures of Trichoderma from 20 strains, representing 11 different Trichoderma species. RESULTS: We identified nine Trichoderma strains that produced plant growth promoting VOCs. Exposure to mixtures of VOCs emitted by these strains increased plant biomass (37.1–41.6 %) and chlorophyll content (82.5–89.3 %). Trichoderma volatile-mediated changes in plant growth were strain- and species-specific. VOCs emitted by T. pseudokoningii (CBS 130756) were associated with the greatest Arabidopsis growth promotion. One strain, T. atroviride (CBS 01-209), in our screen decreased growth (50.5 %) and chlorophyll production (13.1 %). Similarly, tomatoes exposed to VOCs from T. viride (BBA 70239) showed a significant increase in plant biomass (>99 %), larger plant size, and significant development of lateral roots. We also observed that the tomato plant growths were dependent on the duration of the volatile exposure. A GC–MS analysis of VOCs from Trichoderma strains identified more than 141 unique compounds including several unknown sesquiterpenes, diterpenes, and tetraterpenes. CONCLUSIONS: Plants grown in the presence of fungal VOCs emitted by different species and strains of Trichoderma exhibited a range of effects. This study demonstrates that the blend of volatiles produced by actively growing fungi and volatile exposure time in plant development both influence the outcome of volatile-mediated interactions. Only some of our growth promoting strains produced microbial VOCs known to enhance plant growth. Compounds such as 6-pentyl-2H-pyran-2-one were not common to all promoting strains. We found that biostimulatory strains tended to have a larger number of complex terpenes which may explain the variation in growth induced by different Trichoderma strains. |
format | Online Article Text |
id | pubmed-5611631 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-56116312017-09-27 Volatile organic compounds emitted by Trichoderma species mediate plant growth Lee, Samantha Yap, Melanie Behringer, Gregory Hung, Richard Bennett, Joan W. Fungal Biol Biotechnol Research BACKGROUND: Many Trichoderma species are applied as biofungicides and biofertilizers to agricultural soils to enhance crop growth. These filamentous fungi have the ability to reduce plant diseases and promote plant growth and productivity through overlapping modes of action including induced systemic resistance, antibiosis, enhanced nutrient efficiency, and myco-parasitism. Trichoderma species are prolific producers of many small metabolites with antifungal, antibacterial, and anticancer properties. Volatile metabolites of Trichoderma also have the ability to induce resistance to plant pathogens leading to improved plant health. In this study, Arabidopsis plants were exposed to mixtures of volatile organic compounds (VOCs) emitted by growing cultures of Trichoderma from 20 strains, representing 11 different Trichoderma species. RESULTS: We identified nine Trichoderma strains that produced plant growth promoting VOCs. Exposure to mixtures of VOCs emitted by these strains increased plant biomass (37.1–41.6 %) and chlorophyll content (82.5–89.3 %). Trichoderma volatile-mediated changes in plant growth were strain- and species-specific. VOCs emitted by T. pseudokoningii (CBS 130756) were associated with the greatest Arabidopsis growth promotion. One strain, T. atroviride (CBS 01-209), in our screen decreased growth (50.5 %) and chlorophyll production (13.1 %). Similarly, tomatoes exposed to VOCs from T. viride (BBA 70239) showed a significant increase in plant biomass (>99 %), larger plant size, and significant development of lateral roots. We also observed that the tomato plant growths were dependent on the duration of the volatile exposure. A GC–MS analysis of VOCs from Trichoderma strains identified more than 141 unique compounds including several unknown sesquiterpenes, diterpenes, and tetraterpenes. CONCLUSIONS: Plants grown in the presence of fungal VOCs emitted by different species and strains of Trichoderma exhibited a range of effects. This study demonstrates that the blend of volatiles produced by actively growing fungi and volatile exposure time in plant development both influence the outcome of volatile-mediated interactions. Only some of our growth promoting strains produced microbial VOCs known to enhance plant growth. Compounds such as 6-pentyl-2H-pyran-2-one were not common to all promoting strains. We found that biostimulatory strains tended to have a larger number of complex terpenes which may explain the variation in growth induced by different Trichoderma strains. BioMed Central 2016-09-29 /pmc/articles/PMC5611631/ /pubmed/28955466 http://dx.doi.org/10.1186/s40694-016-0025-7 Text en © The Author(s) 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Lee, Samantha Yap, Melanie Behringer, Gregory Hung, Richard Bennett, Joan W. Volatile organic compounds emitted by Trichoderma species mediate plant growth |
title | Volatile organic compounds emitted by Trichoderma species mediate plant growth |
title_full | Volatile organic compounds emitted by Trichoderma species mediate plant growth |
title_fullStr | Volatile organic compounds emitted by Trichoderma species mediate plant growth |
title_full_unstemmed | Volatile organic compounds emitted by Trichoderma species mediate plant growth |
title_short | Volatile organic compounds emitted by Trichoderma species mediate plant growth |
title_sort | volatile organic compounds emitted by trichoderma species mediate plant growth |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5611631/ https://www.ncbi.nlm.nih.gov/pubmed/28955466 http://dx.doi.org/10.1186/s40694-016-0025-7 |
work_keys_str_mv | AT leesamantha volatileorganiccompoundsemittedbytrichodermaspeciesmediateplantgrowth AT yapmelanie volatileorganiccompoundsemittedbytrichodermaspeciesmediateplantgrowth AT behringergregory volatileorganiccompoundsemittedbytrichodermaspeciesmediateplantgrowth AT hungrichard volatileorganiccompoundsemittedbytrichodermaspeciesmediateplantgrowth AT bennettjoanw volatileorganiccompoundsemittedbytrichodermaspeciesmediateplantgrowth |