Cargando…
MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites
Quality control of MRI is essential for excluding problematic acquisitions and avoiding bias in subsequent image processing and analysis. Visual inspection is subjective and impractical for large scale datasets. Although automated quality assessments have been demonstrated on single-site datasets, i...
Autores principales: | Esteban, Oscar, Birman, Daniel, Schaer, Marie, Koyejo, Oluwasanmi O., Poldrack, Russell A., Gorgolewski, Krzysztof J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5612458/ https://www.ncbi.nlm.nih.gov/pubmed/28945803 http://dx.doi.org/10.1371/journal.pone.0184661 |
Ejemplares similares
-
Quality control in functional MRI studies with MRIQC and fMRIPrep
por: Provins, Céline, et al.
Publicado: (2023) -
Effects of thresholding on correlation-based image similarity metrics
por: Sochat, Vanessa V., et al.
Publicado: (2015) -
Decoding brain activity using a large-scale probabilistic functional-anatomical atlas of human cognition
por: Rubin, Timothy N., et al.
Publicado: (2017) -
Crowdsourced MRI quality metrics and expert quality annotations for training of humans and machines
por: Esteban, Oscar, et al.
Publicado: (2019) -
Toward open sharing of task-based fMRI data: the OpenfMRI project
por: Poldrack, Russell A., et al.
Publicado: (2013)