Cargando…
Uptake of (18)F-FET and (18)F-FCH in Human Glioblastoma T98G Cell Line after Irradiation with Photons or Carbon Ions
The differential diagnosis between recurrence of gliomas or brain metastases and this phenomenon is important in order to choose the best therapy and predict the prognosis but is still a big problem for physicians. The new emerging MRI, CT, and PET diagnostic modalities still lack sufficient accurac...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5612615/ https://www.ncbi.nlm.nih.gov/pubmed/29097931 http://dx.doi.org/10.1155/2017/6491674 |
_version_ | 1783266099499892736 |
---|---|
author | Pasi, Francesca Persico, Marco Giovanni Buroni, Federica Eleonora Aprile, Carlo Hodolic, Marina Corbella, Franco Nano, Rosanna Facoetti, Angelica Lodola, Lorenzo |
author_facet | Pasi, Francesca Persico, Marco Giovanni Buroni, Federica Eleonora Aprile, Carlo Hodolic, Marina Corbella, Franco Nano, Rosanna Facoetti, Angelica Lodola, Lorenzo |
author_sort | Pasi, Francesca |
collection | PubMed |
description | The differential diagnosis between recurrence of gliomas or brain metastases and this phenomenon is important in order to choose the best therapy and predict the prognosis but is still a big problem for physicians. The new emerging MRI, CT, and PET diagnostic modalities still lack sufficient accuracy. Radiolabeled choline and amino acids have been reported to show great tumor specificity. We studied the uptake kinetics of [(18)F]fluoromethyl-choline (FCH) and O-(2-[(18)F]fluoroethyl)-L-tyrosine (FET) by the T98G human glioblastoma cells from 20 to 120 min after irradiation either with photons at 2-10-20 Gy or with carbon ions at 2 Gy (at the National Centre for Oncological Hadrontherapy (CNAO), Pavia, Italy). We also evaluated the cell death and morphology changes induced by radiation treatment. Both FET and FCH are able to trace tumor behavior in terms of higher uptake for increased doses of radiation treatment, due to the upregulation of cells attempts to repair nonlethal damage. Our data suggest that both FCH and FET could be useful to analyze the metabolic pathways of glioblastoma cells before and after radiotherapy. Physicians will have to consider the different kinetics pathways of uptake concerning the two radiopharmaceuticals. |
format | Online Article Text |
id | pubmed-5612615 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-56126152017-09-28 Uptake of (18)F-FET and (18)F-FCH in Human Glioblastoma T98G Cell Line after Irradiation with Photons or Carbon Ions Pasi, Francesca Persico, Marco Giovanni Buroni, Federica Eleonora Aprile, Carlo Hodolic, Marina Corbella, Franco Nano, Rosanna Facoetti, Angelica Lodola, Lorenzo Contrast Media Mol Imaging Research Article The differential diagnosis between recurrence of gliomas or brain metastases and this phenomenon is important in order to choose the best therapy and predict the prognosis but is still a big problem for physicians. The new emerging MRI, CT, and PET diagnostic modalities still lack sufficient accuracy. Radiolabeled choline and amino acids have been reported to show great tumor specificity. We studied the uptake kinetics of [(18)F]fluoromethyl-choline (FCH) and O-(2-[(18)F]fluoroethyl)-L-tyrosine (FET) by the T98G human glioblastoma cells from 20 to 120 min after irradiation either with photons at 2-10-20 Gy or with carbon ions at 2 Gy (at the National Centre for Oncological Hadrontherapy (CNAO), Pavia, Italy). We also evaluated the cell death and morphology changes induced by radiation treatment. Both FET and FCH are able to trace tumor behavior in terms of higher uptake for increased doses of radiation treatment, due to the upregulation of cells attempts to repair nonlethal damage. Our data suggest that both FCH and FET could be useful to analyze the metabolic pathways of glioblastoma cells before and after radiotherapy. Physicians will have to consider the different kinetics pathways of uptake concerning the two radiopharmaceuticals. Hindawi Publishing Corporation 2017-01-16 /pmc/articles/PMC5612615/ /pubmed/29097931 http://dx.doi.org/10.1155/2017/6491674 Text en Copyright © 2017 Francesca Pasi et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Pasi, Francesca Persico, Marco Giovanni Buroni, Federica Eleonora Aprile, Carlo Hodolic, Marina Corbella, Franco Nano, Rosanna Facoetti, Angelica Lodola, Lorenzo Uptake of (18)F-FET and (18)F-FCH in Human Glioblastoma T98G Cell Line after Irradiation with Photons or Carbon Ions |
title | Uptake of (18)F-FET and (18)F-FCH in Human Glioblastoma T98G Cell Line after Irradiation with Photons or Carbon Ions |
title_full | Uptake of (18)F-FET and (18)F-FCH in Human Glioblastoma T98G Cell Line after Irradiation with Photons or Carbon Ions |
title_fullStr | Uptake of (18)F-FET and (18)F-FCH in Human Glioblastoma T98G Cell Line after Irradiation with Photons or Carbon Ions |
title_full_unstemmed | Uptake of (18)F-FET and (18)F-FCH in Human Glioblastoma T98G Cell Line after Irradiation with Photons or Carbon Ions |
title_short | Uptake of (18)F-FET and (18)F-FCH in Human Glioblastoma T98G Cell Line after Irradiation with Photons or Carbon Ions |
title_sort | uptake of (18)f-fet and (18)f-fch in human glioblastoma t98g cell line after irradiation with photons or carbon ions |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5612615/ https://www.ncbi.nlm.nih.gov/pubmed/29097931 http://dx.doi.org/10.1155/2017/6491674 |
work_keys_str_mv | AT pasifrancesca uptakeof18ffetand18ffchinhumanglioblastomat98gcelllineafterirradiationwithphotonsorcarbonions AT persicomarcogiovanni uptakeof18ffetand18ffchinhumanglioblastomat98gcelllineafterirradiationwithphotonsorcarbonions AT buronifedericaeleonora uptakeof18ffetand18ffchinhumanglioblastomat98gcelllineafterirradiationwithphotonsorcarbonions AT aprilecarlo uptakeof18ffetand18ffchinhumanglioblastomat98gcelllineafterirradiationwithphotonsorcarbonions AT hodolicmarina uptakeof18ffetand18ffchinhumanglioblastomat98gcelllineafterirradiationwithphotonsorcarbonions AT corbellafranco uptakeof18ffetand18ffchinhumanglioblastomat98gcelllineafterirradiationwithphotonsorcarbonions AT nanorosanna uptakeof18ffetand18ffchinhumanglioblastomat98gcelllineafterirradiationwithphotonsorcarbonions AT facoettiangelica uptakeof18ffetand18ffchinhumanglioblastomat98gcelllineafterirradiationwithphotonsorcarbonions AT lodolalorenzo uptakeof18ffetand18ffchinhumanglioblastomat98gcelllineafterirradiationwithphotonsorcarbonions |