Cargando…

Convex congruences

For an algebra [Formula: see text] belonging to a quasivariety [Formula: see text] , the quotient [Formula: see text] need not belong to [Formula: see text] for every [Formula: see text] . The natural question arises for which [Formula: see text] . We consider algebras [Formula: see text] of type (2...

Descripción completa

Detalles Bibliográficos
Autores principales: Chajda, Ivan, Länger, Helmut
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5613104/
https://www.ncbi.nlm.nih.gov/pubmed/29026344
http://dx.doi.org/10.1007/s00500-016-2306-8
_version_ 1783266184797356032
author Chajda, Ivan
Länger, Helmut
author_facet Chajda, Ivan
Länger, Helmut
author_sort Chajda, Ivan
collection PubMed
description For an algebra [Formula: see text] belonging to a quasivariety [Formula: see text] , the quotient [Formula: see text] need not belong to [Formula: see text] for every [Formula: see text] . The natural question arises for which [Formula: see text] . We consider algebras [Formula: see text] of type (2, 0) where a partial order relation is determined by the operations [Formula: see text] and 1. Within these, we characterize congruences on [Formula: see text] for which [Formula: see text] belongs to the same quasivariety as [Formula: see text] . In several particular cases, these congruences are determined by the property that every class is a convex subset of A.
format Online
Article
Text
id pubmed-5613104
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-56131042017-10-10 Convex congruences Chajda, Ivan Länger, Helmut Soft comput Foundations For an algebra [Formula: see text] belonging to a quasivariety [Formula: see text] , the quotient [Formula: see text] need not belong to [Formula: see text] for every [Formula: see text] . The natural question arises for which [Formula: see text] . We consider algebras [Formula: see text] of type (2, 0) where a partial order relation is determined by the operations [Formula: see text] and 1. Within these, we characterize congruences on [Formula: see text] for which [Formula: see text] belongs to the same quasivariety as [Formula: see text] . In several particular cases, these congruences are determined by the property that every class is a convex subset of A. Springer Berlin Heidelberg 2016-08-09 2017 /pmc/articles/PMC5613104/ /pubmed/29026344 http://dx.doi.org/10.1007/s00500-016-2306-8 Text en © The Author(s) 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Foundations
Chajda, Ivan
Länger, Helmut
Convex congruences
title Convex congruences
title_full Convex congruences
title_fullStr Convex congruences
title_full_unstemmed Convex congruences
title_short Convex congruences
title_sort convex congruences
topic Foundations
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5613104/
https://www.ncbi.nlm.nih.gov/pubmed/29026344
http://dx.doi.org/10.1007/s00500-016-2306-8
work_keys_str_mv AT chajdaivan convexcongruences
AT langerhelmut convexcongruences