Cargando…

The Induction of Oxalate Metabolism In Vivo Is More Effective with Functional Microbial Communities than with Functional Microbial Species

For mammals, oxalate enters the body through the diet or is endogenously produced by the liver; it is removed by microbial oxalate metabolism in the gut and/or excretion in feces or urine. Deficiencies in any one of the these pathways can lead to complications, such as calcium oxalate urinary stones...

Descripción completa

Detalles Bibliográficos
Autores principales: Miller, Aaron W., Dale, Colin, Dearing, M. Denise
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5613171/
https://www.ncbi.nlm.nih.gov/pubmed/28951890
http://dx.doi.org/10.1128/mSystems.00088-17
_version_ 1783266199751098368
author Miller, Aaron W.
Dale, Colin
Dearing, M. Denise
author_facet Miller, Aaron W.
Dale, Colin
Dearing, M. Denise
author_sort Miller, Aaron W.
collection PubMed
description For mammals, oxalate enters the body through the diet or is endogenously produced by the liver; it is removed by microbial oxalate metabolism in the gut and/or excretion in feces or urine. Deficiencies in any one of the these pathways can lead to complications, such as calcium oxalate urinary stones. While considerable research has been conducted on individual oxalate-degrading bacterial isolates, interactions between oxalate and the gut microbiota as a whole are unknown. We examined the reduction in oxalate excretion in a rat model following oral administration of fecal microbes from a mammalian herbivore adapted to a high oxalate diet or to fecal transplants consisting of two different formulations of mixed oxalate-degrading isolates. While all transplants elicited a significant reduction in oxalate excretion initially, the greatest effect was seen with fecal microbial transplants, which persisted even in the absence of dietary oxalate. The reduction in oxalate excretion in animals given fecal transplants corresponded with the establishment of diverse bacteria, including known oxalate-degrading bacteria and a cohesive network of bacteria centered on oxalate-degrading specialists from the Oxalobacteraceae family. Results suggested that the administration of a complete community of bacteria facilitates a cohesive balance in terms of microbial interactions. Our work offers important insights into the development of targeted bacteriotherapies intended to reduce urinary oxalate excretion in patients at risk for recurrent calcium oxalate stones as well as bacteriotherapies targeting other toxins for elimination. IMPORTANCE Oxalate is a central component in 80% of kidney stones. While mammals do not possess the enzymes to degrade oxalate, many gastrointestinal bacteria are efficient oxalate degraders. We examined the role of cohesive microbial networks for oxalate metabolism, using Sprague-Dawley rats as a model host. While the transplantation of oxalate-degrading bacteria alone to the Sprague-Dawley hosts did increase oxalate metabolism, fecal transplants from a wild mammalian herbivore, Neotoma albigula, had a significantly greater effect. Furthermore, the boost for oxalate metabolism persisted only in animals that received fecal transplants. Animals receiving fecal transplants had a more diverse and cohesive network of bacteria associated with the Oxalobacteraceae, a family known to consist of specialist oxalate-degrading bacteria, than did animals that received oxalate-degrading bacteria alone. Our results indicate that fecal transplants are more effective at transferring specific functions than are microbial specialists alone, which has broad implications for the development of bacteriotherapies.
format Online
Article
Text
id pubmed-5613171
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-56131712017-09-26 The Induction of Oxalate Metabolism In Vivo Is More Effective with Functional Microbial Communities than with Functional Microbial Species Miller, Aaron W. Dale, Colin Dearing, M. Denise mSystems Research Article For mammals, oxalate enters the body through the diet or is endogenously produced by the liver; it is removed by microbial oxalate metabolism in the gut and/or excretion in feces or urine. Deficiencies in any one of the these pathways can lead to complications, such as calcium oxalate urinary stones. While considerable research has been conducted on individual oxalate-degrading bacterial isolates, interactions between oxalate and the gut microbiota as a whole are unknown. We examined the reduction in oxalate excretion in a rat model following oral administration of fecal microbes from a mammalian herbivore adapted to a high oxalate diet or to fecal transplants consisting of two different formulations of mixed oxalate-degrading isolates. While all transplants elicited a significant reduction in oxalate excretion initially, the greatest effect was seen with fecal microbial transplants, which persisted even in the absence of dietary oxalate. The reduction in oxalate excretion in animals given fecal transplants corresponded with the establishment of diverse bacteria, including known oxalate-degrading bacteria and a cohesive network of bacteria centered on oxalate-degrading specialists from the Oxalobacteraceae family. Results suggested that the administration of a complete community of bacteria facilitates a cohesive balance in terms of microbial interactions. Our work offers important insights into the development of targeted bacteriotherapies intended to reduce urinary oxalate excretion in patients at risk for recurrent calcium oxalate stones as well as bacteriotherapies targeting other toxins for elimination. IMPORTANCE Oxalate is a central component in 80% of kidney stones. While mammals do not possess the enzymes to degrade oxalate, many gastrointestinal bacteria are efficient oxalate degraders. We examined the role of cohesive microbial networks for oxalate metabolism, using Sprague-Dawley rats as a model host. While the transplantation of oxalate-degrading bacteria alone to the Sprague-Dawley hosts did increase oxalate metabolism, fecal transplants from a wild mammalian herbivore, Neotoma albigula, had a significantly greater effect. Furthermore, the boost for oxalate metabolism persisted only in animals that received fecal transplants. Animals receiving fecal transplants had a more diverse and cohesive network of bacteria associated with the Oxalobacteraceae, a family known to consist of specialist oxalate-degrading bacteria, than did animals that received oxalate-degrading bacteria alone. Our results indicate that fecal transplants are more effective at transferring specific functions than are microbial specialists alone, which has broad implications for the development of bacteriotherapies. American Society for Microbiology 2017-09-26 /pmc/articles/PMC5613171/ /pubmed/28951890 http://dx.doi.org/10.1128/mSystems.00088-17 Text en Copyright © 2017 Miller et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Miller, Aaron W.
Dale, Colin
Dearing, M. Denise
The Induction of Oxalate Metabolism In Vivo Is More Effective with Functional Microbial Communities than with Functional Microbial Species
title The Induction of Oxalate Metabolism In Vivo Is More Effective with Functional Microbial Communities than with Functional Microbial Species
title_full The Induction of Oxalate Metabolism In Vivo Is More Effective with Functional Microbial Communities than with Functional Microbial Species
title_fullStr The Induction of Oxalate Metabolism In Vivo Is More Effective with Functional Microbial Communities than with Functional Microbial Species
title_full_unstemmed The Induction of Oxalate Metabolism In Vivo Is More Effective with Functional Microbial Communities than with Functional Microbial Species
title_short The Induction of Oxalate Metabolism In Vivo Is More Effective with Functional Microbial Communities than with Functional Microbial Species
title_sort induction of oxalate metabolism in vivo is more effective with functional microbial communities than with functional microbial species
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5613171/
https://www.ncbi.nlm.nih.gov/pubmed/28951890
http://dx.doi.org/10.1128/mSystems.00088-17
work_keys_str_mv AT milleraaronw theinductionofoxalatemetabolisminvivoismoreeffectivewithfunctionalmicrobialcommunitiesthanwithfunctionalmicrobialspecies
AT dalecolin theinductionofoxalatemetabolisminvivoismoreeffectivewithfunctionalmicrobialcommunitiesthanwithfunctionalmicrobialspecies
AT dearingmdenise theinductionofoxalatemetabolisminvivoismoreeffectivewithfunctionalmicrobialcommunitiesthanwithfunctionalmicrobialspecies
AT milleraaronw inductionofoxalatemetabolisminvivoismoreeffectivewithfunctionalmicrobialcommunitiesthanwithfunctionalmicrobialspecies
AT dalecolin inductionofoxalatemetabolisminvivoismoreeffectivewithfunctionalmicrobialcommunitiesthanwithfunctionalmicrobialspecies
AT dearingmdenise inductionofoxalatemetabolisminvivoismoreeffectivewithfunctionalmicrobialcommunitiesthanwithfunctionalmicrobialspecies