Cargando…
Population Modeling Integrating Pharmacokinetics, Pharmacodynamics, Pharmacogenetics, and Clinical Outcome in Patients With Sunitinib‐Treated Cancer
The tyrosine kinase inhibitor sunitinib is used as first‐line therapy in patients with metastasized renal cell carcinoma (mRCC), given in fixed‐dose regimens despite its high variability in pharmacokinetics (PKs). Interindividual variability of drug exposure may be responsible for differences in res...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5613186/ https://www.ncbi.nlm.nih.gov/pubmed/28571114 http://dx.doi.org/10.1002/psp4.12210 |
_version_ | 1783266202819231744 |
---|---|
author | Diekstra, MH Fritsch, A Kanefendt, F Swen, JJ Moes, DJAR Sörgel, F Kinzig, M Stelzer, C Schindele, D Gauler, T Hauser, S Houtsma, D Roessler, M Moritz, B Mross, K Bergmann, L Oosterwijk, E Kiemeney, LA Guchelaar, HJ Jaehde, U |
author_facet | Diekstra, MH Fritsch, A Kanefendt, F Swen, JJ Moes, DJAR Sörgel, F Kinzig, M Stelzer, C Schindele, D Gauler, T Hauser, S Houtsma, D Roessler, M Moritz, B Mross, K Bergmann, L Oosterwijk, E Kiemeney, LA Guchelaar, HJ Jaehde, U |
author_sort | Diekstra, MH |
collection | PubMed |
description | The tyrosine kinase inhibitor sunitinib is used as first‐line therapy in patients with metastasized renal cell carcinoma (mRCC), given in fixed‐dose regimens despite its high variability in pharmacokinetics (PKs). Interindividual variability of drug exposure may be responsible for differences in response. Therefore, dosing strategies based on pharmacokinetic/pharmacodynamic (PK/PD) models may be useful to optimize treatment. Plasma concentrations of sunitinib, its active metabolite SU12662, and the soluble vascular endothelial growth factor receptors sVEGFR‐2 and sVEGFR‐3, were measured in 26 patients with mRCC within the EuroTARGET project and 21 patients with metastasized colorectal cancer (mCRC) from the C‐II‐005 study. Based on these observations, PK/PD models with potential influence of genetic predictors were developed and linked to time‐to‐event (TTE) models. Baseline sVEGFR‐2 levels were associated with clinical outcome in patients with mRCC, whereas active drug PKs seemed to be more predictive in patients with mCRC. The models provide the basis of PK/PD‐guided strategies for the individualization of anti‐angiogenic therapies. |
format | Online Article Text |
id | pubmed-5613186 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-56131862017-10-02 Population Modeling Integrating Pharmacokinetics, Pharmacodynamics, Pharmacogenetics, and Clinical Outcome in Patients With Sunitinib‐Treated Cancer Diekstra, MH Fritsch, A Kanefendt, F Swen, JJ Moes, DJAR Sörgel, F Kinzig, M Stelzer, C Schindele, D Gauler, T Hauser, S Houtsma, D Roessler, M Moritz, B Mross, K Bergmann, L Oosterwijk, E Kiemeney, LA Guchelaar, HJ Jaehde, U CPT Pharmacometrics Syst Pharmacol Original Articles The tyrosine kinase inhibitor sunitinib is used as first‐line therapy in patients with metastasized renal cell carcinoma (mRCC), given in fixed‐dose regimens despite its high variability in pharmacokinetics (PKs). Interindividual variability of drug exposure may be responsible for differences in response. Therefore, dosing strategies based on pharmacokinetic/pharmacodynamic (PK/PD) models may be useful to optimize treatment. Plasma concentrations of sunitinib, its active metabolite SU12662, and the soluble vascular endothelial growth factor receptors sVEGFR‐2 and sVEGFR‐3, were measured in 26 patients with mRCC within the EuroTARGET project and 21 patients with metastasized colorectal cancer (mCRC) from the C‐II‐005 study. Based on these observations, PK/PD models with potential influence of genetic predictors were developed and linked to time‐to‐event (TTE) models. Baseline sVEGFR‐2 levels were associated with clinical outcome in patients with mRCC, whereas active drug PKs seemed to be more predictive in patients with mCRC. The models provide the basis of PK/PD‐guided strategies for the individualization of anti‐angiogenic therapies. John Wiley and Sons Inc. 2017-07-13 2017-09 /pmc/articles/PMC5613186/ /pubmed/28571114 http://dx.doi.org/10.1002/psp4.12210 Text en © 2017 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs (http://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Original Articles Diekstra, MH Fritsch, A Kanefendt, F Swen, JJ Moes, DJAR Sörgel, F Kinzig, M Stelzer, C Schindele, D Gauler, T Hauser, S Houtsma, D Roessler, M Moritz, B Mross, K Bergmann, L Oosterwijk, E Kiemeney, LA Guchelaar, HJ Jaehde, U Population Modeling Integrating Pharmacokinetics, Pharmacodynamics, Pharmacogenetics, and Clinical Outcome in Patients With Sunitinib‐Treated Cancer |
title | Population Modeling Integrating Pharmacokinetics, Pharmacodynamics, Pharmacogenetics, and Clinical Outcome in Patients With Sunitinib‐Treated Cancer |
title_full | Population Modeling Integrating Pharmacokinetics, Pharmacodynamics, Pharmacogenetics, and Clinical Outcome in Patients With Sunitinib‐Treated Cancer |
title_fullStr | Population Modeling Integrating Pharmacokinetics, Pharmacodynamics, Pharmacogenetics, and Clinical Outcome in Patients With Sunitinib‐Treated Cancer |
title_full_unstemmed | Population Modeling Integrating Pharmacokinetics, Pharmacodynamics, Pharmacogenetics, and Clinical Outcome in Patients With Sunitinib‐Treated Cancer |
title_short | Population Modeling Integrating Pharmacokinetics, Pharmacodynamics, Pharmacogenetics, and Clinical Outcome in Patients With Sunitinib‐Treated Cancer |
title_sort | population modeling integrating pharmacokinetics, pharmacodynamics, pharmacogenetics, and clinical outcome in patients with sunitinib‐treated cancer |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5613186/ https://www.ncbi.nlm.nih.gov/pubmed/28571114 http://dx.doi.org/10.1002/psp4.12210 |
work_keys_str_mv | AT diekstramh populationmodelingintegratingpharmacokineticspharmacodynamicspharmacogeneticsandclinicaloutcomeinpatientswithsunitinibtreatedcancer AT fritscha populationmodelingintegratingpharmacokineticspharmacodynamicspharmacogeneticsandclinicaloutcomeinpatientswithsunitinibtreatedcancer AT kanefendtf populationmodelingintegratingpharmacokineticspharmacodynamicspharmacogeneticsandclinicaloutcomeinpatientswithsunitinibtreatedcancer AT swenjj populationmodelingintegratingpharmacokineticspharmacodynamicspharmacogeneticsandclinicaloutcomeinpatientswithsunitinibtreatedcancer AT moesdjar populationmodelingintegratingpharmacokineticspharmacodynamicspharmacogeneticsandclinicaloutcomeinpatientswithsunitinibtreatedcancer AT sorgelf populationmodelingintegratingpharmacokineticspharmacodynamicspharmacogeneticsandclinicaloutcomeinpatientswithsunitinibtreatedcancer AT kinzigm populationmodelingintegratingpharmacokineticspharmacodynamicspharmacogeneticsandclinicaloutcomeinpatientswithsunitinibtreatedcancer AT stelzerc populationmodelingintegratingpharmacokineticspharmacodynamicspharmacogeneticsandclinicaloutcomeinpatientswithsunitinibtreatedcancer AT schindeled populationmodelingintegratingpharmacokineticspharmacodynamicspharmacogeneticsandclinicaloutcomeinpatientswithsunitinibtreatedcancer AT gaulert populationmodelingintegratingpharmacokineticspharmacodynamicspharmacogeneticsandclinicaloutcomeinpatientswithsunitinibtreatedcancer AT hausers populationmodelingintegratingpharmacokineticspharmacodynamicspharmacogeneticsandclinicaloutcomeinpatientswithsunitinibtreatedcancer AT houtsmad populationmodelingintegratingpharmacokineticspharmacodynamicspharmacogeneticsandclinicaloutcomeinpatientswithsunitinibtreatedcancer AT roesslerm populationmodelingintegratingpharmacokineticspharmacodynamicspharmacogeneticsandclinicaloutcomeinpatientswithsunitinibtreatedcancer AT moritzb populationmodelingintegratingpharmacokineticspharmacodynamicspharmacogeneticsandclinicaloutcomeinpatientswithsunitinibtreatedcancer AT mrossk populationmodelingintegratingpharmacokineticspharmacodynamicspharmacogeneticsandclinicaloutcomeinpatientswithsunitinibtreatedcancer AT bergmannl populationmodelingintegratingpharmacokineticspharmacodynamicspharmacogeneticsandclinicaloutcomeinpatientswithsunitinibtreatedcancer AT oosterwijke populationmodelingintegratingpharmacokineticspharmacodynamicspharmacogeneticsandclinicaloutcomeinpatientswithsunitinibtreatedcancer AT kiemeneyla populationmodelingintegratingpharmacokineticspharmacodynamicspharmacogeneticsandclinicaloutcomeinpatientswithsunitinibtreatedcancer AT guchelaarhj populationmodelingintegratingpharmacokineticspharmacodynamicspharmacogeneticsandclinicaloutcomeinpatientswithsunitinibtreatedcancer AT jaehdeu populationmodelingintegratingpharmacokineticspharmacodynamicspharmacogeneticsandclinicaloutcomeinpatientswithsunitinibtreatedcancer |