Cargando…

Population Modeling Integrating Pharmacokinetics, Pharmacodynamics, Pharmacogenetics, and Clinical Outcome in Patients With Sunitinib‐Treated Cancer

The tyrosine kinase inhibitor sunitinib is used as first‐line therapy in patients with metastasized renal cell carcinoma (mRCC), given in fixed‐dose regimens despite its high variability in pharmacokinetics (PKs). Interindividual variability of drug exposure may be responsible for differences in res...

Descripción completa

Detalles Bibliográficos
Autores principales: Diekstra, MH, Fritsch, A, Kanefendt, F, Swen, JJ, Moes, DJAR, Sörgel, F, Kinzig, M, Stelzer, C, Schindele, D, Gauler, T, Hauser, S, Houtsma, D, Roessler, M, Moritz, B, Mross, K, Bergmann, L, Oosterwijk, E, Kiemeney, LA, Guchelaar, HJ, Jaehde, U
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5613186/
https://www.ncbi.nlm.nih.gov/pubmed/28571114
http://dx.doi.org/10.1002/psp4.12210
_version_ 1783266202819231744
author Diekstra, MH
Fritsch, A
Kanefendt, F
Swen, JJ
Moes, DJAR
Sörgel, F
Kinzig, M
Stelzer, C
Schindele, D
Gauler, T
Hauser, S
Houtsma, D
Roessler, M
Moritz, B
Mross, K
Bergmann, L
Oosterwijk, E
Kiemeney, LA
Guchelaar, HJ
Jaehde, U
author_facet Diekstra, MH
Fritsch, A
Kanefendt, F
Swen, JJ
Moes, DJAR
Sörgel, F
Kinzig, M
Stelzer, C
Schindele, D
Gauler, T
Hauser, S
Houtsma, D
Roessler, M
Moritz, B
Mross, K
Bergmann, L
Oosterwijk, E
Kiemeney, LA
Guchelaar, HJ
Jaehde, U
author_sort Diekstra, MH
collection PubMed
description The tyrosine kinase inhibitor sunitinib is used as first‐line therapy in patients with metastasized renal cell carcinoma (mRCC), given in fixed‐dose regimens despite its high variability in pharmacokinetics (PKs). Interindividual variability of drug exposure may be responsible for differences in response. Therefore, dosing strategies based on pharmacokinetic/pharmacodynamic (PK/PD) models may be useful to optimize treatment. Plasma concentrations of sunitinib, its active metabolite SU12662, and the soluble vascular endothelial growth factor receptors sVEGFR‐2 and sVEGFR‐3, were measured in 26 patients with mRCC within the EuroTARGET project and 21 patients with metastasized colorectal cancer (mCRC) from the C‐II‐005 study. Based on these observations, PK/PD models with potential influence of genetic predictors were developed and linked to time‐to‐event (TTE) models. Baseline sVEGFR‐2 levels were associated with clinical outcome in patients with mRCC, whereas active drug PKs seemed to be more predictive in patients with mCRC. The models provide the basis of PK/PD‐guided strategies for the individualization of anti‐angiogenic therapies.
format Online
Article
Text
id pubmed-5613186
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-56131862017-10-02 Population Modeling Integrating Pharmacokinetics, Pharmacodynamics, Pharmacogenetics, and Clinical Outcome in Patients With Sunitinib‐Treated Cancer Diekstra, MH Fritsch, A Kanefendt, F Swen, JJ Moes, DJAR Sörgel, F Kinzig, M Stelzer, C Schindele, D Gauler, T Hauser, S Houtsma, D Roessler, M Moritz, B Mross, K Bergmann, L Oosterwijk, E Kiemeney, LA Guchelaar, HJ Jaehde, U CPT Pharmacometrics Syst Pharmacol Original Articles The tyrosine kinase inhibitor sunitinib is used as first‐line therapy in patients with metastasized renal cell carcinoma (mRCC), given in fixed‐dose regimens despite its high variability in pharmacokinetics (PKs). Interindividual variability of drug exposure may be responsible for differences in response. Therefore, dosing strategies based on pharmacokinetic/pharmacodynamic (PK/PD) models may be useful to optimize treatment. Plasma concentrations of sunitinib, its active metabolite SU12662, and the soluble vascular endothelial growth factor receptors sVEGFR‐2 and sVEGFR‐3, were measured in 26 patients with mRCC within the EuroTARGET project and 21 patients with metastasized colorectal cancer (mCRC) from the C‐II‐005 study. Based on these observations, PK/PD models with potential influence of genetic predictors were developed and linked to time‐to‐event (TTE) models. Baseline sVEGFR‐2 levels were associated with clinical outcome in patients with mRCC, whereas active drug PKs seemed to be more predictive in patients with mCRC. The models provide the basis of PK/PD‐guided strategies for the individualization of anti‐angiogenic therapies. John Wiley and Sons Inc. 2017-07-13 2017-09 /pmc/articles/PMC5613186/ /pubmed/28571114 http://dx.doi.org/10.1002/psp4.12210 Text en © 2017 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs (http://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Original Articles
Diekstra, MH
Fritsch, A
Kanefendt, F
Swen, JJ
Moes, DJAR
Sörgel, F
Kinzig, M
Stelzer, C
Schindele, D
Gauler, T
Hauser, S
Houtsma, D
Roessler, M
Moritz, B
Mross, K
Bergmann, L
Oosterwijk, E
Kiemeney, LA
Guchelaar, HJ
Jaehde, U
Population Modeling Integrating Pharmacokinetics, Pharmacodynamics, Pharmacogenetics, and Clinical Outcome in Patients With Sunitinib‐Treated Cancer
title Population Modeling Integrating Pharmacokinetics, Pharmacodynamics, Pharmacogenetics, and Clinical Outcome in Patients With Sunitinib‐Treated Cancer
title_full Population Modeling Integrating Pharmacokinetics, Pharmacodynamics, Pharmacogenetics, and Clinical Outcome in Patients With Sunitinib‐Treated Cancer
title_fullStr Population Modeling Integrating Pharmacokinetics, Pharmacodynamics, Pharmacogenetics, and Clinical Outcome in Patients With Sunitinib‐Treated Cancer
title_full_unstemmed Population Modeling Integrating Pharmacokinetics, Pharmacodynamics, Pharmacogenetics, and Clinical Outcome in Patients With Sunitinib‐Treated Cancer
title_short Population Modeling Integrating Pharmacokinetics, Pharmacodynamics, Pharmacogenetics, and Clinical Outcome in Patients With Sunitinib‐Treated Cancer
title_sort population modeling integrating pharmacokinetics, pharmacodynamics, pharmacogenetics, and clinical outcome in patients with sunitinib‐treated cancer
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5613186/
https://www.ncbi.nlm.nih.gov/pubmed/28571114
http://dx.doi.org/10.1002/psp4.12210
work_keys_str_mv AT diekstramh populationmodelingintegratingpharmacokineticspharmacodynamicspharmacogeneticsandclinicaloutcomeinpatientswithsunitinibtreatedcancer
AT fritscha populationmodelingintegratingpharmacokineticspharmacodynamicspharmacogeneticsandclinicaloutcomeinpatientswithsunitinibtreatedcancer
AT kanefendtf populationmodelingintegratingpharmacokineticspharmacodynamicspharmacogeneticsandclinicaloutcomeinpatientswithsunitinibtreatedcancer
AT swenjj populationmodelingintegratingpharmacokineticspharmacodynamicspharmacogeneticsandclinicaloutcomeinpatientswithsunitinibtreatedcancer
AT moesdjar populationmodelingintegratingpharmacokineticspharmacodynamicspharmacogeneticsandclinicaloutcomeinpatientswithsunitinibtreatedcancer
AT sorgelf populationmodelingintegratingpharmacokineticspharmacodynamicspharmacogeneticsandclinicaloutcomeinpatientswithsunitinibtreatedcancer
AT kinzigm populationmodelingintegratingpharmacokineticspharmacodynamicspharmacogeneticsandclinicaloutcomeinpatientswithsunitinibtreatedcancer
AT stelzerc populationmodelingintegratingpharmacokineticspharmacodynamicspharmacogeneticsandclinicaloutcomeinpatientswithsunitinibtreatedcancer
AT schindeled populationmodelingintegratingpharmacokineticspharmacodynamicspharmacogeneticsandclinicaloutcomeinpatientswithsunitinibtreatedcancer
AT gaulert populationmodelingintegratingpharmacokineticspharmacodynamicspharmacogeneticsandclinicaloutcomeinpatientswithsunitinibtreatedcancer
AT hausers populationmodelingintegratingpharmacokineticspharmacodynamicspharmacogeneticsandclinicaloutcomeinpatientswithsunitinibtreatedcancer
AT houtsmad populationmodelingintegratingpharmacokineticspharmacodynamicspharmacogeneticsandclinicaloutcomeinpatientswithsunitinibtreatedcancer
AT roesslerm populationmodelingintegratingpharmacokineticspharmacodynamicspharmacogeneticsandclinicaloutcomeinpatientswithsunitinibtreatedcancer
AT moritzb populationmodelingintegratingpharmacokineticspharmacodynamicspharmacogeneticsandclinicaloutcomeinpatientswithsunitinibtreatedcancer
AT mrossk populationmodelingintegratingpharmacokineticspharmacodynamicspharmacogeneticsandclinicaloutcomeinpatientswithsunitinibtreatedcancer
AT bergmannl populationmodelingintegratingpharmacokineticspharmacodynamicspharmacogeneticsandclinicaloutcomeinpatientswithsunitinibtreatedcancer
AT oosterwijke populationmodelingintegratingpharmacokineticspharmacodynamicspharmacogeneticsandclinicaloutcomeinpatientswithsunitinibtreatedcancer
AT kiemeneyla populationmodelingintegratingpharmacokineticspharmacodynamicspharmacogeneticsandclinicaloutcomeinpatientswithsunitinibtreatedcancer
AT guchelaarhj populationmodelingintegratingpharmacokineticspharmacodynamicspharmacogeneticsandclinicaloutcomeinpatientswithsunitinibtreatedcancer
AT jaehdeu populationmodelingintegratingpharmacokineticspharmacodynamicspharmacogeneticsandclinicaloutcomeinpatientswithsunitinibtreatedcancer