Cargando…

Inertial proximal alternating minimization for nonconvex and nonsmooth problems

In this paper, we study the minimization problem of the type [Formula: see text] , where f and g are both nonconvex nonsmooth functions, and R is a smooth function we can choose. We present a proximal alternating minimization algorithm with inertial effect. We obtain the convergence by constructing...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yaxuan, He, Songnian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5613284/
https://www.ncbi.nlm.nih.gov/pubmed/29026279
http://dx.doi.org/10.1186/s13660-017-1504-y
_version_ 1783266223528607744
author Zhang, Yaxuan
He, Songnian
author_facet Zhang, Yaxuan
He, Songnian
author_sort Zhang, Yaxuan
collection PubMed
description In this paper, we study the minimization problem of the type [Formula: see text] , where f and g are both nonconvex nonsmooth functions, and R is a smooth function we can choose. We present a proximal alternating minimization algorithm with inertial effect. We obtain the convergence by constructing a key function H that guarantees a sufficient decrease property of the iterates. In fact, we prove that if H satisfies the Kurdyka-Lojasiewicz inequality, then every bounded sequence generated by the algorithm converges strongly to a critical point of L.
format Online
Article
Text
id pubmed-5613284
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Springer International Publishing
record_format MEDLINE/PubMed
spelling pubmed-56132842017-10-10 Inertial proximal alternating minimization for nonconvex and nonsmooth problems Zhang, Yaxuan He, Songnian J Inequal Appl Research In this paper, we study the minimization problem of the type [Formula: see text] , where f and g are both nonconvex nonsmooth functions, and R is a smooth function we can choose. We present a proximal alternating minimization algorithm with inertial effect. We obtain the convergence by constructing a key function H that guarantees a sufficient decrease property of the iterates. In fact, we prove that if H satisfies the Kurdyka-Lojasiewicz inequality, then every bounded sequence generated by the algorithm converges strongly to a critical point of L. Springer International Publishing 2017-09-20 2017 /pmc/articles/PMC5613284/ /pubmed/29026279 http://dx.doi.org/10.1186/s13660-017-1504-y Text en © The Author(s) 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Research
Zhang, Yaxuan
He, Songnian
Inertial proximal alternating minimization for nonconvex and nonsmooth problems
title Inertial proximal alternating minimization for nonconvex and nonsmooth problems
title_full Inertial proximal alternating minimization for nonconvex and nonsmooth problems
title_fullStr Inertial proximal alternating minimization for nonconvex and nonsmooth problems
title_full_unstemmed Inertial proximal alternating minimization for nonconvex and nonsmooth problems
title_short Inertial proximal alternating minimization for nonconvex and nonsmooth problems
title_sort inertial proximal alternating minimization for nonconvex and nonsmooth problems
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5613284/
https://www.ncbi.nlm.nih.gov/pubmed/29026279
http://dx.doi.org/10.1186/s13660-017-1504-y
work_keys_str_mv AT zhangyaxuan inertialproximalalternatingminimizationfornonconvexandnonsmoothproblems
AT hesongnian inertialproximalalternatingminimizationfornonconvexandnonsmoothproblems