Cargando…
Biosignals learning and synthesis using deep neural networks
BACKGROUND: Modeling physiological signals is a complex task both for understanding and synthesize biomedical signals. We propose a deep neural network model that learns and synthesizes biosignals, validated by the morphological equivalence of the original ones. This research could lead the creation...
Autores principales: | Belo, David, Rodrigues, João, Vaz, João R., Pezarat-Correia, Pedro, Gamboa, Hugo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5613402/ https://www.ncbi.nlm.nih.gov/pubmed/28946919 http://dx.doi.org/10.1186/s12938-017-0405-0 |
Ejemplares similares
-
Feature-Based Information Retrieval of Multimodal Biosignals with a Self-Similarity Matrix: Focus on Automatic Segmentation
por: Rodrigues, João, et al.
Publicado: (2022) -
Augmentation in Healthcare: Augmented Biosignal Using Deep Learning and Tensor Representation
por: Ibrahim, Marwa, et al.
Publicado: (2021) -
Deep Learning on 1-D Biosignals: a Taxonomy-based Survey
por: Ganapathy, Nagarajan, et al.
Publicado: (2018) -
Biosignal Sensors and Deep Learning-Based Speech Recognition: A Review
por: Lee, Wookey, et al.
Publicado: (2021) -
ECG Biometrics Using Deep Learning and Relative Score Threshold Classification
por: Belo, David, et al.
Publicado: (2020)