Cargando…
Predicting the multi-domain progression of Parkinson’s disease: a Bayesian multivariate generalized linear mixed-effect model
BACKGROUND: It is challenging for current statistical models to predict clinical progression of Parkinson’s disease (PD) because of the involvement of multi-domains and longitudinal data. METHODS: Past univariate longitudinal or multivariate analyses from cross-sectional trials have limited power to...
Autores principales: | Wang, Ming, Li, Zheng, Lee, Eun Young, Lewis, Mechelle M., Zhang, Lijun, Sterling, Nicholas W., Wagner, Daymond, Eslinger, Paul, Du, Guangwei, Huang, Xuemei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5613469/ https://www.ncbi.nlm.nih.gov/pubmed/28946857 http://dx.doi.org/10.1186/s12874-017-0415-4 |
Ejemplares similares
-
Higher Plasma LDL-Cholesterol is Associated with Preserved Executive and Fine Motor Functions in Parkinson’s Disease
por: Sterling, Nicholas W., et al.
Publicado: (2016) -
Circulating Cholesterol Levels May Link to the Factors Influencing Parkinson’s Risk
por: Zhang, Lijun, et al.
Publicado: (2017) -
Bayesian Inference for Generalized Linear Mixed Model Based on the Multivariate t Distribution in Population Pharmacokinetic Study
por: Yan, Fang-Rong, et al.
Publicado: (2013) -
Predicting clinical events using Bayesian multivariate linear mixed models with application to scleroderma
por: Kim, Ji Soo, et al.
Publicado: (2021) -
Bayesian Generalized Linear Mixed Modeling of Breast Cancer
por: ROPO EBENEZER, Ogunsakin, et al.
Publicado: (2019)