Cargando…
Real-time In Vivo Recording of Arabidopsis Calcium Signals During Insect Feeding Using a Fluorescent Biosensor
Calcium ions are predicted to be key signaling entities during biotic interactions, with calcium signaling forming an established part of the plant defense response to microbial elicitors and to wounding caused by chewing insects, eliciting systemic calcium signals in plants. However, the role of ca...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MyJove Corporation
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5614317/ https://www.ncbi.nlm.nih.gov/pubmed/28829425 http://dx.doi.org/10.3791/56142 |
_version_ | 1783266391356342272 |
---|---|
author | Vincent, Thomas R. Canham, James Toyota, Masatsugu Avramova, Marieta Mugford, Sam T. Gilroy, Simon Miller, Anthony J. Hogenhout, Saskia Sanders, Dale |
author_facet | Vincent, Thomas R. Canham, James Toyota, Masatsugu Avramova, Marieta Mugford, Sam T. Gilroy, Simon Miller, Anthony J. Hogenhout, Saskia Sanders, Dale |
author_sort | Vincent, Thomas R. |
collection | PubMed |
description | Calcium ions are predicted to be key signaling entities during biotic interactions, with calcium signaling forming an established part of the plant defense response to microbial elicitors and to wounding caused by chewing insects, eliciting systemic calcium signals in plants. However, the role of calcium in vivo during biotic stress is still unclear. This protocol describes the use of a genetically-encoded calcium sensor to detect calcium signals in plants during feeding by a hemipteran pest. Hemipterans such as aphids pierce a small number of cells with specialized, elongated sucking mouthparts, making them the ideal tool to study calcium dynamics when a plant is faced with a biotic stress, which is distinct from a wounding response. In addition, fluorescent biosensors are revolutionizing the measurement of signaling molecules in vivo in both animals and plants. Expressing a GFP-based calcium biosensor, GCaMP3, in the model plant Arabidopsis thaliana allows for the real-time imaging of plant calcium dynamics during insect feeding, with a high spatial and temporal resolution. A repeatable and robust assay has been developed using the fluorescence microscopy of detached GCaMP3 leaves, allowing for the continuous measurement of cytosolic calcium dynamics before, during, and after insect feeding. This reveals a highly-localized rapid calcium elevation around the aphid feeding site that occurs within a few minutes. The protocol can be adapted to other biotic stresses, such as additional insect species, while the use of Arabidopsis thaliana allows for the rapid generation of mutants to facilitate the molecular analysis of the phenomenon. |
format | Online Article Text |
id | pubmed-5614317 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MyJove Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-56143172017-10-10 Real-time In Vivo Recording of Arabidopsis Calcium Signals During Insect Feeding Using a Fluorescent Biosensor Vincent, Thomas R. Canham, James Toyota, Masatsugu Avramova, Marieta Mugford, Sam T. Gilroy, Simon Miller, Anthony J. Hogenhout, Saskia Sanders, Dale J Vis Exp Biochemistry Calcium ions are predicted to be key signaling entities during biotic interactions, with calcium signaling forming an established part of the plant defense response to microbial elicitors and to wounding caused by chewing insects, eliciting systemic calcium signals in plants. However, the role of calcium in vivo during biotic stress is still unclear. This protocol describes the use of a genetically-encoded calcium sensor to detect calcium signals in plants during feeding by a hemipteran pest. Hemipterans such as aphids pierce a small number of cells with specialized, elongated sucking mouthparts, making them the ideal tool to study calcium dynamics when a plant is faced with a biotic stress, which is distinct from a wounding response. In addition, fluorescent biosensors are revolutionizing the measurement of signaling molecules in vivo in both animals and plants. Expressing a GFP-based calcium biosensor, GCaMP3, in the model plant Arabidopsis thaliana allows for the real-time imaging of plant calcium dynamics during insect feeding, with a high spatial and temporal resolution. A repeatable and robust assay has been developed using the fluorescence microscopy of detached GCaMP3 leaves, allowing for the continuous measurement of cytosolic calcium dynamics before, during, and after insect feeding. This reveals a highly-localized rapid calcium elevation around the aphid feeding site that occurs within a few minutes. The protocol can be adapted to other biotic stresses, such as additional insect species, while the use of Arabidopsis thaliana allows for the rapid generation of mutants to facilitate the molecular analysis of the phenomenon. MyJove Corporation 2017-08-15 /pmc/articles/PMC5614317/ /pubmed/28829425 http://dx.doi.org/10.3791/56142 Text en Copyright © 2017, Journal of Visualized Experiments http://creativecommons.org/licenses/by/3.0/us/ This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 License. To view a copy of this license, visithttp://creativecommons.org/licenses/by/3.0/us/ |
spellingShingle | Biochemistry Vincent, Thomas R. Canham, James Toyota, Masatsugu Avramova, Marieta Mugford, Sam T. Gilroy, Simon Miller, Anthony J. Hogenhout, Saskia Sanders, Dale Real-time In Vivo Recording of Arabidopsis Calcium Signals During Insect Feeding Using a Fluorescent Biosensor |
title | Real-time In Vivo Recording of Arabidopsis Calcium Signals During Insect Feeding Using a Fluorescent Biosensor |
title_full | Real-time In Vivo Recording of Arabidopsis Calcium Signals During Insect Feeding Using a Fluorescent Biosensor |
title_fullStr | Real-time In Vivo Recording of Arabidopsis Calcium Signals During Insect Feeding Using a Fluorescent Biosensor |
title_full_unstemmed | Real-time In Vivo Recording of Arabidopsis Calcium Signals During Insect Feeding Using a Fluorescent Biosensor |
title_short | Real-time In Vivo Recording of Arabidopsis Calcium Signals During Insect Feeding Using a Fluorescent Biosensor |
title_sort | real-time in vivo recording of arabidopsis calcium signals during insect feeding using a fluorescent biosensor |
topic | Biochemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5614317/ https://www.ncbi.nlm.nih.gov/pubmed/28829425 http://dx.doi.org/10.3791/56142 |
work_keys_str_mv | AT vincentthomasr realtimeinvivorecordingofarabidopsiscalciumsignalsduringinsectfeedingusingafluorescentbiosensor AT canhamjames realtimeinvivorecordingofarabidopsiscalciumsignalsduringinsectfeedingusingafluorescentbiosensor AT toyotamasatsugu realtimeinvivorecordingofarabidopsiscalciumsignalsduringinsectfeedingusingafluorescentbiosensor AT avramovamarieta realtimeinvivorecordingofarabidopsiscalciumsignalsduringinsectfeedingusingafluorescentbiosensor AT mugfordsamt realtimeinvivorecordingofarabidopsiscalciumsignalsduringinsectfeedingusingafluorescentbiosensor AT gilroysimon realtimeinvivorecordingofarabidopsiscalciumsignalsduringinsectfeedingusingafluorescentbiosensor AT milleranthonyj realtimeinvivorecordingofarabidopsiscalciumsignalsduringinsectfeedingusingafluorescentbiosensor AT hogenhoutsaskia realtimeinvivorecordingofarabidopsiscalciumsignalsduringinsectfeedingusingafluorescentbiosensor AT sandersdale realtimeinvivorecordingofarabidopsiscalciumsignalsduringinsectfeedingusingafluorescentbiosensor |