Cargando…

Measures of odor and lateralization thresholds of acrolein, crotonaldehyde, and hexanal using a novel vapor delivery technique

INTRODUCTION: Humans are exposed to aldehydes in a variety of environmental situations. Aldehydes generally have a strong odor and are highly irritating to the mucous membranes. Knowledge about odor perception and especially irritation potency in humans is thus essential in risk assessment and regul...

Descripción completa

Detalles Bibliográficos
Autores principales: Ernstgård, Lena, Dwivedi, Aishwarya M., Lundström, Johan N., Johanson, Gunnar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5614536/
https://www.ncbi.nlm.nih.gov/pubmed/28950007
http://dx.doi.org/10.1371/journal.pone.0185479
Descripción
Sumario:INTRODUCTION: Humans are exposed to aldehydes in a variety of environmental situations. Aldehydes generally have a strong odor and are highly irritating to the mucous membranes. Knowledge about odor perception and especially irritation potency in humans is thus essential in risk assessment and regulation, e.g. setting occupational exposure limits. However, data on odor and irritation are lacking or limited for several aldehydes. The aim of the study was to determine the odor and lateralization thresholds of some commonly occurring aldehydes. Acrolein and crotonaldehyde where chosen as they are formed when organic material is heated or burned, e.g. during cigarette smoking. n-Hexanal was also included as it is emitted from wood pellets and fibreboard. MATERIAL AND METHODS: To study odor and lateralization thresholds of these aldehydes, a novel, inexpensive olfactometer was designed to enable delivery of reliable and stable test concentrations and thus valid measures of thresholds. The delivery system consists of seven syringe pumps, each connected to a Tedlar bag containing a predefined concentration of the tested aldehyde vapor. To validate the threshold measures, a test-retest was performed with a separate method, namely odor delivery via amber bottles. Twenty healthy naïve individuals were tested. RESULTS: The median odor thresholds of acrolein, crotonaldehyde and hexanal were 17, 0.8, and 97 ppb, respectively. No lateralization threshold could be identified for acrolein (highest tested concentration was 2 940 ppb in 5 subjects), whereas the medians were 3 and 390 ppb for the latter two. In addition, odor thresholds for n-hexanal were also determined using two methods where similar results were obtained, suggesting that the olfactometer presentation method is valid. CONCLUSION: We found olfactory detection and lateralization thresholds (except for acrolein) in alliance with, or lower than, previously reported in naïve subjects. The new olfactometer allows better control of presentations timing and vapor concentration.