Cargando…
Foliar zinc biofortification effects in Lolium rigidum and Trifolium subterraneum grown in cadmium-contaminated soil
Zinc (Zn) is an important micronutrient that can alleviate cadmium (Cd) toxicity to plants and limit Cd entry into the food chain. However, little is known about the Zn-Cd interactions in pasture plants. We characterized the effects of foliar Zn application and Cd uptake by ryegrass (Lolium rigidum...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5614633/ https://www.ncbi.nlm.nih.gov/pubmed/28950025 http://dx.doi.org/10.1371/journal.pone.0185395 |
Sumario: | Zinc (Zn) is an important micronutrient that can alleviate cadmium (Cd) toxicity to plants and limit Cd entry into the food chain. However, little is known about the Zn-Cd interactions in pasture plants. We characterized the effects of foliar Zn application and Cd uptake by ryegrass (Lolium rigidum L.) and clover (Trifolium subterraneum L.) grown on Cd-contaminated soils; all combinations of foliar Zn applications (0, 0.25 and 0.5% (w/v) ZnSO(4)·7H(2)O) and soil Cd concentrations (0, 2.5 and 5 mg Cd kg(-1)) were tested. For both plant species, soil concentrations of DTPA-extractable Cd and Zn increased with an increase in the Cd and Zn treatments, respectively. Compared with L. rigidum, T. subterraneum accumulated, respectively, 3.3- and 4.1-fold more Cd in the 2.5-Cd and 5-Cd treatments and about 1.3-, 2.3- and 2.8-fold more Zn in the No-Zn, 0.25-Zn and 0.5-Zn treatments. Also, DTPA-Zn concentration was higher in soil after T. subterraneum than L. rigidum growth regardless of Zn applications. Foliar application of 0.25% (w/v) Zn significantly decreased the total Cd concentration in shoots of both species grown in the Cd-contaminated soil and ameliorated the adverse effects of Cd exposure on root growth, particularly in T. subterraneum. |
---|