Cargando…

Multi-provincial Salmonellosis Outbreak Related to Newly Hatched Chicks and Poults: A Genomics Perspective

BACKGROUND: A multi-provincial outbreak of Salmonella enterica serovar Enteritidis was linked to newly hatched chicks and poults from a single hatchery during the spring of 2015. In total, there were 61 human cases that were epidemiologically confirmed to be linked to the chicks and poults and the o...

Descripción completa

Detalles Bibliográficos
Autores principales: Croxen, Matthew A., Macdonald, Kimberley A., Walker, Matthew, deWith, Nancy, Zabek, Erin, Peterson, Christy, Reimer, Aleisha, Chui, Linda, Tschetter, Lorelee, Hoang, Linda, King, Robin K
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5614700/
https://www.ncbi.nlm.nih.gov/pubmed/29034124
http://dx.doi.org/10.1371/currents.outbreaks.309af53b9edcc785163539c30c3953f6
Descripción
Sumario:BACKGROUND: A multi-provincial outbreak of Salmonella enterica serovar Enteritidis was linked to newly hatched chicks and poults from a single hatchery during the spring of 2015. In total, there were 61 human cases that were epidemiologically confirmed to be linked to the chicks and poults and the outbreak was deemed to have ended in the summer of 2015. METHODS: PulseNet Canada, in coordination with the affected provinces, used genome sequencing of human and agricultural Salmonella Enteritidis isolates to aid in the epidemiological investigation, while also using traditional typing methods such as phagetyping and pulsed-field gel electrophoresis (PFGE). RESULTS: All human outbreak cases, except one, were Phage Type (PT) 13a. Single nucleotide variant analysis (SNV) was able to provide a level of resolution commensurate with the results of the epidemiological investigation. SNV analysis was also able to separate PT13a outbreak-related isolates from isolates not linked to chicks or poults, while clustering some non-PT13a agricultural strains with the outbreak cluster. CONCLUSIONS: Based on conventional typing methods (phagetyping or PFGE), clinical and agricultural PT13a SE isolates would have been considered as part of a related cluster. In contrast, phagetyping would have led to the exclusion of several non- PT13a strains that clustered with the outbreak isolates using the genome sequence data. This study demonstrates the improved resolution of genome sequence analysis for coordinated surveillance and source attribution of both human and agricultural SE isolates.