Cargando…
Use of anabolic androgenic steroids produces greater oxidative stress responses to resistance exercise in strength-trained men
The aim of this study was to determine the effect of anabolic androgenic steroids (AAS) use on oxidative stress responses to a single session of resistance exercise in strength-trained men. Twenty-three strength trained men, with 11 self-reporting regular AAS use and 12 self-reporting never taking A...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5615127/ https://www.ncbi.nlm.nih.gov/pubmed/28959650 http://dx.doi.org/10.1016/j.toxrep.2017.05.005 |
Sumario: | The aim of this study was to determine the effect of anabolic androgenic steroids (AAS) use on oxidative stress responses to a single session of resistance exercise in strength-trained men. Twenty-three strength trained men, with 11 self-reporting regular AAS use and 12 self-reporting never taking AAS (NAAS) volunteered to participate in this study. Blood draws were obtained pre and post resistance exercise in order to evaluate changes in oxidative stress biomarkers levels (i.e., 8-hydroxy-2-deoxyguanosine [8-OHdG], malondialdehyde [MDA], and nitric oxide [NO]), antioxidant defense systems (i.e., glutathione peroxidase [GPx] and catalase [CAT]), and glucose (GLU) levels. The AAS users had higher level of 8-OHdG (77.3 ± 17 vs. 57.7 ± 18.2 ng/mg), MDA (85.6 ± 17.8 vs. 52.3 ± 15.1 ng/mL), and GPx (9.1 ± 2.3 vs. 7.1 ± 1.3 mu/mL) compared to NAAS at pre exercise (p < 0.05). Both the experimental groups showed increases in 8-OHdG (p = 0.001), MDA (p = 0.001), GPx (p = 0.001), NO (p = 0.04), CAT (p = 0.02) and GLU (p = 0.001) concentrations after resistance exercise, and the AAS group indicated significant differences in 8-OHdG (p = 0.02) and MDA (p = 0.05) concentrations compared with NAAS users at post exercise. In conclusion, use of AAS is associated with alterations in immune function resulting in oxidative stress, and cell damage; however, high-intensity resistance exercise could increase greater oxidative stress biomarkers in strength-trained men. |
---|