Cargando…
Predicting Variation of DNA Shape Preferences in Protein-DNA Interaction in Cancer Cells with a New Biophysical Model
DNA shape readout is an important mechanism of transcription factor target site recognition, in addition to the sequence readout. Several machine learning-based models of transcription factor–DNA interactions, considering DNA shape features, have been developed in recent years. Here, we present a ne...
Autores principales: | Batmanov, Kirill, Wang, Junbai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5615366/ https://www.ncbi.nlm.nih.gov/pubmed/28927002 http://dx.doi.org/10.3390/genes8090233 |
Ejemplares similares
-
BayesPI-BAR: a new biophysical model for characterization of regulatory sequence variations
por: Wang, Junbai, et al.
Publicado: (2015) -
BayesPI-BAR2: A New Python Package for Predicting Functional Non-coding Mutations in Cancer Patient Cohorts
por: Batmanov, Kirill, et al.
Publicado: (2019) -
Integrative whole-genome sequence analysis reveals roles of regulatory mutations in BCL6 and BCL2 in follicular lymphoma
por: Batmanov, Kirill, et al.
Publicado: (2017) -
BayesPI - a new model to study protein-DNA interactions: a case study of condition-specific protein binding parameters for Yeast transcription factors
por: Wang, Junbai, et al.
Publicado: (2009) -
Biophysics of DNA
por: Vologodskii, Alexander
Publicado: (2015)