Cargando…
Active Transportation on a Complete Street: Perceived and Audited Walkability Correlates
Few studies of walkability include both perceived and audited walkability measures. We examined perceived walkability (Neighborhood Environment Walkability Scale—Abbreviated, NEWS-A) and audited walkability (Irvine–Minnesota Inventory, IMI) measures for residents living within 2 km of a “complete st...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5615551/ https://www.ncbi.nlm.nih.gov/pubmed/28872595 http://dx.doi.org/10.3390/ijerph14091014 |
Sumario: | Few studies of walkability include both perceived and audited walkability measures. We examined perceived walkability (Neighborhood Environment Walkability Scale—Abbreviated, NEWS-A) and audited walkability (Irvine–Minnesota Inventory, IMI) measures for residents living within 2 km of a “complete street”—one renovated with light rail, bike lanes, and sidewalks. For perceived walkability, we found some differences but substantial similarity between our final scales and those in a prior published confirmatory factor analysis. Perceived walkability, in interaction with distance, was related to complete street active transportation. Residents were likely to have active transportation on the street when they lived nearby and perceived good aesthetics, crime safety, and traffic safety. Audited walkability, analyzed with decision trees, showed three general clusters of walkability areas, with 12 specific subtypes. A subset of walkability items (n = 11), including sidewalks, zebra-striped crosswalks, decorative sidewalks, pedestrian signals, and blank walls combined to cluster street segments. The 12 subtypes yielded 81% correct classification of residents’ active transportation. Both perceived and audited walkability were important predictors of active transportation. For audited walkability, we recommend more exploration of decision tree approaches, given their predictive utility and ease of translation into walkability interventions. |
---|