Cargando…
Exploring the Effects of Argon Plasma Treatment on Plasmon Frequency and the Chemiresistive Properties of Polymer-Carbon Nanotube Metacomposite
Metacomposites, composite materials exhibiting negative permittivity, represent an opportunity to create materials with depressed plasmon frequency without the need to create complex structural geometries. Although many reports exist on the synthesis and characterizations of metacomposites, very few...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5615641/ https://www.ncbi.nlm.nih.gov/pubmed/28837097 http://dx.doi.org/10.3390/ma10090986 |
Sumario: | Metacomposites, composite materials exhibiting negative permittivity, represent an opportunity to create materials with depressed plasmon frequency without the need to create complex structural geometries. Although many reports exist on the synthesis and characterizations of metacomposites, very few have ventured into exploring possible applications that could take advantage of the unique electrical properties of these materials. In this article, we report on the chemiresistive properties of a polymer-CNT metacomposite and explore how these are affected by Argon plasma treatment. |
---|