Cargando…
PS244. Depression severity and related characteristics correlate significantly with activation in brain areas selected through machine learning
Autores principales: | Shimizu, Yu, Doya, Kenji, Okada, Go, Okamoto, Yasumasa, Takamura, Masahiro, Yamawaki, Shigeto, Yoshimoto, Junichiro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5616839/ http://dx.doi.org/10.1093/ijnp/pyw043.244 |
Ejemplares similares
-
Identification of depression subtypes and relevant brain regions using a data-driven approach
por: Tokuda, Tomoki, et al.
Publicado: (2018) -
Prediction of clinical depression scores and detection of changes in whole-brain using resting-state functional MRI data with partial least squares regression
por: Yoshida, Kosuke, et al.
Publicado: (2017) -
Multiple co-clustering based on nonparametric mixture models with heterogeneous marginal distributions
por: Tokuda, Tomoki, et al.
Publicado: (2017) -
Toward Probabilistic Diagnosis and Understanding of Depression Based on Functional MRI Data Analysis with Logistic Group LASSO
por: Shimizu, Yu, et al.
Publicado: (2015) -
Enhancing Multi-Center Generalization of Machine Learning-Based Depression Diagnosis From Resting-State fMRI
por: Nakano, Takashi, et al.
Publicado: (2020)