Cargando…
miCAT: A toolbox for analysis of cell phenotypes and interactions in multiplex image cytometry data
Single-cell, spatially resolved ‘omics analysis of tissues is poised to transform biomedical research and clinical practice. We have developed an open-source, computational multiplex image cytometry analysis toolbox (miCAT) to enable interactive, quantitative, and comprehensive exploration of indivi...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5617107/ https://www.ncbi.nlm.nih.gov/pubmed/28783155 http://dx.doi.org/10.1038/nmeth.4391 |
_version_ | 1783266941068115968 |
---|---|
author | Schapiro, Denis Jackson, Hartland W Raghuraman, Swetha Fischer, Jana R Zanotelli, Vito R. T. Schulz, Daniel Giesen, Charlotte Catena, Raúl Varga, Zsuzsanna Bodenmiller, Bernd |
author_facet | Schapiro, Denis Jackson, Hartland W Raghuraman, Swetha Fischer, Jana R Zanotelli, Vito R. T. Schulz, Daniel Giesen, Charlotte Catena, Raúl Varga, Zsuzsanna Bodenmiller, Bernd |
author_sort | Schapiro, Denis |
collection | PubMed |
description | Single-cell, spatially resolved ‘omics analysis of tissues is poised to transform biomedical research and clinical practice. We have developed an open-source, computational multiplex image cytometry analysis toolbox (miCAT) to enable interactive, quantitative, and comprehensive exploration of individual cell phenotypes, cell-to-cell interactions, microenvironments, and morphological structures within intact tissues. We highlight the unique abilities of miCAT by analysis of highly multiplexed mass cytometry images of human breast cancer tissues. |
format | Online Article Text |
id | pubmed-5617107 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
record_format | MEDLINE/PubMed |
spelling | pubmed-56171072018-02-07 miCAT: A toolbox for analysis of cell phenotypes and interactions in multiplex image cytometry data Schapiro, Denis Jackson, Hartland W Raghuraman, Swetha Fischer, Jana R Zanotelli, Vito R. T. Schulz, Daniel Giesen, Charlotte Catena, Raúl Varga, Zsuzsanna Bodenmiller, Bernd Nat Methods Article Single-cell, spatially resolved ‘omics analysis of tissues is poised to transform biomedical research and clinical practice. We have developed an open-source, computational multiplex image cytometry analysis toolbox (miCAT) to enable interactive, quantitative, and comprehensive exploration of individual cell phenotypes, cell-to-cell interactions, microenvironments, and morphological structures within intact tissues. We highlight the unique abilities of miCAT by analysis of highly multiplexed mass cytometry images of human breast cancer tissues. 2017-08-07 2017-09 /pmc/articles/PMC5617107/ /pubmed/28783155 http://dx.doi.org/10.1038/nmeth.4391 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Schapiro, Denis Jackson, Hartland W Raghuraman, Swetha Fischer, Jana R Zanotelli, Vito R. T. Schulz, Daniel Giesen, Charlotte Catena, Raúl Varga, Zsuzsanna Bodenmiller, Bernd miCAT: A toolbox for analysis of cell phenotypes and interactions in multiplex image cytometry data |
title | miCAT: A toolbox for analysis of cell phenotypes and interactions in multiplex image cytometry data |
title_full | miCAT: A toolbox for analysis of cell phenotypes and interactions in multiplex image cytometry data |
title_fullStr | miCAT: A toolbox for analysis of cell phenotypes and interactions in multiplex image cytometry data |
title_full_unstemmed | miCAT: A toolbox for analysis of cell phenotypes and interactions in multiplex image cytometry data |
title_short | miCAT: A toolbox for analysis of cell phenotypes and interactions in multiplex image cytometry data |
title_sort | micat: a toolbox for analysis of cell phenotypes and interactions in multiplex image cytometry data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5617107/ https://www.ncbi.nlm.nih.gov/pubmed/28783155 http://dx.doi.org/10.1038/nmeth.4391 |
work_keys_str_mv | AT schapirodenis micatatoolboxforanalysisofcellphenotypesandinteractionsinmultipleximagecytometrydata AT jacksonhartlandw micatatoolboxforanalysisofcellphenotypesandinteractionsinmultipleximagecytometrydata AT raghuramanswetha micatatoolboxforanalysisofcellphenotypesandinteractionsinmultipleximagecytometrydata AT fischerjanar micatatoolboxforanalysisofcellphenotypesandinteractionsinmultipleximagecytometrydata AT zanotellivitort micatatoolboxforanalysisofcellphenotypesandinteractionsinmultipleximagecytometrydata AT schulzdaniel micatatoolboxforanalysisofcellphenotypesandinteractionsinmultipleximagecytometrydata AT giesencharlotte micatatoolboxforanalysisofcellphenotypesandinteractionsinmultipleximagecytometrydata AT catenaraul micatatoolboxforanalysisofcellphenotypesandinteractionsinmultipleximagecytometrydata AT vargazsuzsanna micatatoolboxforanalysisofcellphenotypesandinteractionsinmultipleximagecytometrydata AT bodenmillerbernd micatatoolboxforanalysisofcellphenotypesandinteractionsinmultipleximagecytometrydata |