Cargando…

miCAT: A toolbox for analysis of cell phenotypes and interactions in multiplex image cytometry data

Single-cell, spatially resolved ‘omics analysis of tissues is poised to transform biomedical research and clinical practice. We have developed an open-source, computational multiplex image cytometry analysis toolbox (miCAT) to enable interactive, quantitative, and comprehensive exploration of indivi...

Descripción completa

Detalles Bibliográficos
Autores principales: Schapiro, Denis, Jackson, Hartland W, Raghuraman, Swetha, Fischer, Jana R, Zanotelli, Vito R. T., Schulz, Daniel, Giesen, Charlotte, Catena, Raúl, Varga, Zsuzsanna, Bodenmiller, Bernd
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5617107/
https://www.ncbi.nlm.nih.gov/pubmed/28783155
http://dx.doi.org/10.1038/nmeth.4391
_version_ 1783266941068115968
author Schapiro, Denis
Jackson, Hartland W
Raghuraman, Swetha
Fischer, Jana R
Zanotelli, Vito R. T.
Schulz, Daniel
Giesen, Charlotte
Catena, Raúl
Varga, Zsuzsanna
Bodenmiller, Bernd
author_facet Schapiro, Denis
Jackson, Hartland W
Raghuraman, Swetha
Fischer, Jana R
Zanotelli, Vito R. T.
Schulz, Daniel
Giesen, Charlotte
Catena, Raúl
Varga, Zsuzsanna
Bodenmiller, Bernd
author_sort Schapiro, Denis
collection PubMed
description Single-cell, spatially resolved ‘omics analysis of tissues is poised to transform biomedical research and clinical practice. We have developed an open-source, computational multiplex image cytometry analysis toolbox (miCAT) to enable interactive, quantitative, and comprehensive exploration of individual cell phenotypes, cell-to-cell interactions, microenvironments, and morphological structures within intact tissues. We highlight the unique abilities of miCAT by analysis of highly multiplexed mass cytometry images of human breast cancer tissues.
format Online
Article
Text
id pubmed-5617107
institution National Center for Biotechnology Information
language English
publishDate 2017
record_format MEDLINE/PubMed
spelling pubmed-56171072018-02-07 miCAT: A toolbox for analysis of cell phenotypes and interactions in multiplex image cytometry data Schapiro, Denis Jackson, Hartland W Raghuraman, Swetha Fischer, Jana R Zanotelli, Vito R. T. Schulz, Daniel Giesen, Charlotte Catena, Raúl Varga, Zsuzsanna Bodenmiller, Bernd Nat Methods Article Single-cell, spatially resolved ‘omics analysis of tissues is poised to transform biomedical research and clinical practice. We have developed an open-source, computational multiplex image cytometry analysis toolbox (miCAT) to enable interactive, quantitative, and comprehensive exploration of individual cell phenotypes, cell-to-cell interactions, microenvironments, and morphological structures within intact tissues. We highlight the unique abilities of miCAT by analysis of highly multiplexed mass cytometry images of human breast cancer tissues. 2017-08-07 2017-09 /pmc/articles/PMC5617107/ /pubmed/28783155 http://dx.doi.org/10.1038/nmeth.4391 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Schapiro, Denis
Jackson, Hartland W
Raghuraman, Swetha
Fischer, Jana R
Zanotelli, Vito R. T.
Schulz, Daniel
Giesen, Charlotte
Catena, Raúl
Varga, Zsuzsanna
Bodenmiller, Bernd
miCAT: A toolbox for analysis of cell phenotypes and interactions in multiplex image cytometry data
title miCAT: A toolbox for analysis of cell phenotypes and interactions in multiplex image cytometry data
title_full miCAT: A toolbox for analysis of cell phenotypes and interactions in multiplex image cytometry data
title_fullStr miCAT: A toolbox for analysis of cell phenotypes and interactions in multiplex image cytometry data
title_full_unstemmed miCAT: A toolbox for analysis of cell phenotypes and interactions in multiplex image cytometry data
title_short miCAT: A toolbox for analysis of cell phenotypes and interactions in multiplex image cytometry data
title_sort micat: a toolbox for analysis of cell phenotypes and interactions in multiplex image cytometry data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5617107/
https://www.ncbi.nlm.nih.gov/pubmed/28783155
http://dx.doi.org/10.1038/nmeth.4391
work_keys_str_mv AT schapirodenis micatatoolboxforanalysisofcellphenotypesandinteractionsinmultipleximagecytometrydata
AT jacksonhartlandw micatatoolboxforanalysisofcellphenotypesandinteractionsinmultipleximagecytometrydata
AT raghuramanswetha micatatoolboxforanalysisofcellphenotypesandinteractionsinmultipleximagecytometrydata
AT fischerjanar micatatoolboxforanalysisofcellphenotypesandinteractionsinmultipleximagecytometrydata
AT zanotellivitort micatatoolboxforanalysisofcellphenotypesandinteractionsinmultipleximagecytometrydata
AT schulzdaniel micatatoolboxforanalysisofcellphenotypesandinteractionsinmultipleximagecytometrydata
AT giesencharlotte micatatoolboxforanalysisofcellphenotypesandinteractionsinmultipleximagecytometrydata
AT catenaraul micatatoolboxforanalysisofcellphenotypesandinteractionsinmultipleximagecytometrydata
AT vargazsuzsanna micatatoolboxforanalysisofcellphenotypesandinteractionsinmultipleximagecytometrydata
AT bodenmillerbernd micatatoolboxforanalysisofcellphenotypesandinteractionsinmultipleximagecytometrydata