Cargando…
Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing
Quantifying and monitoring the spatial and temporal dynamics of the global land cover is critical for better understanding many of the Earth’s land surface processes. However, the lack of regularly updated, continental-scale, and high spatial resolution (30 m) land cover data limit our ability to be...
Autores principales: | Midekisa, Alemayehu, Holl, Felix, Savory, David J., Andrade-Pacheco, Ricardo, Gething, Peter W., Bennett, Adam, Sturrock, Hugh J. W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5617164/ https://www.ncbi.nlm.nih.gov/pubmed/28953943 http://dx.doi.org/10.1371/journal.pone.0184926 |
Ejemplares similares
-
Household electricity access in Africa (2000–2013): Closing information gaps with model-based geostatistics
por: Andrade-Pacheco, Ricardo, et al.
Publicado: (2019) -
Mapping and spatiotemporal dynamics of land-use and land-cover change based on the Google Earth Engine cloud platform from Landsat imagery: A case study of Zhoushan Island, China
por: Chen, Chao, et al.
Publicado: (2023) -
Land Cover Change in the Central Region of the Lower Yangtze River Based on Landsat Imagery and the Google Earth Engine: A Case Study in Nanjing, China
por: Zhang, Dong-Dong, et al.
Publicado: (2020) -
Predicting residential structures from open source remotely enumerated data using machine learning
por: Sturrock, Hugh J. W., et al.
Publicado: (2018) -
Mapping of Land Cover with Optical Images, Supervised Algorithms, and Google Earth Engine
por: Pech-May, Fernando, et al.
Publicado: (2022)