Cargando…

Ilomastat, a synthetic inhibitor of MMPs, prevents lung injury induced by γ-ray irradiation in mice

Lung injury is one of the pathological features in human or animal after radiation and the main side effect for patient after lung cancer radiotherapy. The efficient protective strategy still needs to exploit and the underlying mechanisms remain to be investigated. We found that the expression and a...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Xiaoman, Ma, Dehui, Zha, Xiaodan, Quan, Dongqin, Pan, Dong, Sun, Manji, Hu, Burong, Zhao, Baoquan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5617386/
https://www.ncbi.nlm.nih.gov/pubmed/28977826
http://dx.doi.org/10.18632/oncotarget.18487
Descripción
Sumario:Lung injury is one of the pathological features in human or animal after radiation and the main side effect for patient after lung cancer radiotherapy. The efficient protective strategy still needs to exploit and the underlying mechanisms remain to be investigated. We found that the expression and activity of matrix metalloproteinases (MMPs) significantly increased at the early stage of radiation-induced lung injury (RILI). Pretreatment with Ilomastat, a synthetic inhibitor of MMPs, decreased the expression and activity of MMPs and significantly alleviated the lung inflammation and fibrosis in the irradiated mice, as well as enhanced the survival of irradiated mice. In addition, the levels of TGF-β, IL-6, TNF-α and IL-1β in the tissues dramatically reduced in the irradiated mice pretreated with Ilomastat. Furthermore, our experiments in vitro also showed that radiation significantly increased the MMPs activity, and Ilomastat pretreatment inhibited the activity of MMPs activated by irradiation and increased the cell survival. It is the first report, to our knowledge, to demonstrate that Ilomastat is a potential effective reliever for RILI and MMPs may play important roles in the process of RILI.