Cargando…

Analysis of region specific gene expression patterns in the heart and systemic responses after experimental myocardial ischemia

AIMS: Ischemic myocardial injury leads to the activation of inflammatory mechanisms and results in ventricular remodeling. Although great efforts have been made to unravel the molecular and cellular processes taking place in the ischemic myocardium, little is known about the effects on the surroundi...

Descripción completa

Detalles Bibliográficos
Autores principales: Zimmermann, Matthias, Beer, Lucian, Ullrich, Robert, Lukovic, Dominika, Simader, Elisabeth, Traxler, Denise, Wagner, Tanja, Nemec, Lucas, Altenburger, Lukas, Zuckermann, Andreas, Gyöngyösi, Mariann, Ankersmit, Hendrik Jan, Mildner, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5617387/
https://www.ncbi.nlm.nih.gov/pubmed/28977827
http://dx.doi.org/10.18632/oncotarget.17955
Descripción
Sumario:AIMS: Ischemic myocardial injury leads to the activation of inflammatory mechanisms and results in ventricular remodeling. Although great efforts have been made to unravel the molecular and cellular processes taking place in the ischemic myocardium, little is known about the effects on the surrounding tissue and other organs. The aim of this study was to determine region specific differences in the myocardium and in distant organs after experimental myocardial infarction by using a bioinformatics approach. METHODS AND RESULTS: A porcine closed chest reperfused acute myocardial infarction model and mRNA microarrays have been used to evaluate gene expression changes. Myocardial infarction changed the expression of 8903 genes in myocardial-, 856 in hepatic- and 338 in splenic tissue. Identification of myocardial region specific differences as well as expression profiling of distant organs revealed clear gene-regulation patterns within the first 24 hours after ischemia. Transcription factor binding site analysis suggested a strong role for Kruppel like factor 4 (Klf4) in the regulation of gene expression following myocardial infarction, and was therefore investigated further by immunohistochemistry. Strong nuclear Klf4 expression with clear region specific differences was detectable in porcine and human heart samples after myocardial infarction. CONCLUSION: Apart from presenting a post myocardial infarction gene expression database and specific response pathways, the key message of this work is that myocardial ischemia does not end at the injured myocardium. The present results have enlarged the spectrum of organs affected, and suggest that a variety of organ systems are involved in the co-ordination of the organism´s response to myocardial infarction.