Cargando…

Genistein improves inflammatory response and colonic function through NF-κB signal in DSS-induced colonic injury

This study aimed to investigate the protective potential of genistein in dextran sulfate sodium (DSS)-induced colonic injury in vitro and in vivo models. The results showed that DSS exposure caused growth suppression, colonic injury, inflammation, and barrier dysfunction in mice. Dietary genistein a...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Rui, Xu, Jian, Zhao, Jian, Chen, Yuzhe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5617431/
https://www.ncbi.nlm.nih.gov/pubmed/28977871
http://dx.doi.org/10.18632/oncotarget.18219
Descripción
Sumario:This study aimed to investigate the protective potential of genistein in dextran sulfate sodium (DSS)-induced colonic injury in vitro and in vivo models. The results showed that DSS exposure caused growth suppression, colonic injury, inflammation, and barrier dysfunction in mice. Dietary genistein alleviated DSS-caused colonic injury via reducing colonic weight, rectal bleeding, and diarrhea ratio. Meanwhile, genistein reduced colonic inflammatory response via downregulating cytokines expression and improved colonic permeability and barrier in DSS-challenged mice. In Caco-2 cells, genistein improved cell viability and cellular permeability and inhibited DSS-induced activation of TLR4/NF-κB signal. In conclusion, genistein alleviated DSS-caused colonic injury, inflammation, and gut dysfunction, which might be associated with the TLR4/NF-κB signal.