Cargando…

MOC31PE immunotoxin – targeting peritoneal metastasis from epithelial ovarian cancer

Peritoneal metastasis (PM) is an important feature of epithelial ovarian cancer (EOC) and is a frequent site of drug resistant disease recurrence, identifying PM-EOC an important clinical challenge. The MOC31PE immunotoxin targets and kills tumor cells expressing the epithelial cell adhesion molecul...

Descripción completa

Detalles Bibliográficos
Autores principales: Andersson, Yvonne, Haavardtun, Synne Ihler, Davidson, Ben, Dørum, Anne, Fleten, Karianne G., Fodstad, Øystein, Flatmark, Kjersti
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5617465/
https://www.ncbi.nlm.nih.gov/pubmed/28977905
http://dx.doi.org/10.18632/oncotarget.18694
Descripción
Sumario:Peritoneal metastasis (PM) is an important feature of epithelial ovarian cancer (EOC) and is a frequent site of drug resistant disease recurrence, identifying PM-EOC an important clinical challenge. The MOC31PE immunotoxin targets and kills tumor cells expressing the epithelial cell adhesion molecule (EpCAM), which is highly expressed in EOC, and MOC31PE is being investigated for use in treatment of PM-EOC. The efficacy of MOC31PE treatment alone and in combination with cytotoxic drugs was investigated in two human EpCAM expressing EOC cell lines, B76 and MDHA-2774, in vitro and in corresponding mouse models mimicking PM-EOC. MOC31PE efficaciously killed tumor cells alone and showed equal or superior activity in vitro (paclitaxel, cisplatin, carboplatin) and in vivo (paclitaxel, mitomycin C) compared to the investigated cytotoxic drugs. Additive, or importantly, no antagonistic effects were observed in combination experiments. In ex vivo cell culture, the cytotoxic effect of MOC31PE was studied on freshly isolated surgical EOC samples. All investigated fresh EOC samples expressed EpCAM and MOC31PE effectively reduced cell viability in ex vivo cultures. In conclusion, these results, together with our previous preclinical and clinical experience, support development of MOC31PE for treatment of PM-EOC in combination with currently used cytotoxic drugs.