Cargando…
A Single Active Site Mutation in the Pikromycin Thioesterase Generates a More Effective Macrocyclization Catalyst
[Image: see text] Macrolactonization of natural product analogs presents a significant challenge to both biosynthetic assembly and synthetic chemistry. In the preceding paper, we identified a thioesterase (TE) domain catalytic bottleneck processing unnatural substrates in the pikromycin (Pik) system...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2017
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5617804/ https://www.ncbi.nlm.nih.gov/pubmed/28836768 http://dx.doi.org/10.1021/jacs.7b06436 |
_version_ | 1783267047589806080 |
---|---|
author | Koch, Aaron A. Hansen, Douglas A. Shende, Vikram V. Furan, Lawrence R. Houk, K. N. Jiménez-Osés, Gonzalo Sherman, David H. |
author_facet | Koch, Aaron A. Hansen, Douglas A. Shende, Vikram V. Furan, Lawrence R. Houk, K. N. Jiménez-Osés, Gonzalo Sherman, David H. |
author_sort | Koch, Aaron A. |
collection | PubMed |
description | [Image: see text] Macrolactonization of natural product analogs presents a significant challenge to both biosynthetic assembly and synthetic chemistry. In the preceding paper, we identified a thioesterase (TE) domain catalytic bottleneck processing unnatural substrates in the pikromycin (Pik) system, preventing the formation of epimerized macrolactones. Here, we perform molecular dynamics simulations showing the epimerized hexaketide was accommodated within the Pik TE active site; however, intrinsic conformational preferences of the substrate resulted in predominately unproductive conformations, in agreement with the observed hydrolysis. Accordingly, we engineered the stereoselective Pik TE to yield a variant (TE(S148C)) with improved reaction kinetics and gain-of-function processing of an unnatural, epimerized hexaketide. Quantum mechanical comparison of model TE(S148C) and TE(WT) reaction coordinate diagrams revealed a change in mechanism from a stepwise addition–elimination (TE(WT)) to a lower energy concerted acyl substitution (TE(S148C)), accounting for the gain-of-function and improved reaction kinetics. Finally, we introduced the S148C mutation into a polyketide synthase module (PikAIII-TE) to impart increased substrate flexibility, enabling the production of diastereomeric macrolactones. |
format | Online Article Text |
id | pubmed-5617804 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-56178042018-09-27 A Single Active Site Mutation in the Pikromycin Thioesterase Generates a More Effective Macrocyclization Catalyst Koch, Aaron A. Hansen, Douglas A. Shende, Vikram V. Furan, Lawrence R. Houk, K. N. Jiménez-Osés, Gonzalo Sherman, David H. J Am Chem Soc [Image: see text] Macrolactonization of natural product analogs presents a significant challenge to both biosynthetic assembly and synthetic chemistry. In the preceding paper, we identified a thioesterase (TE) domain catalytic bottleneck processing unnatural substrates in the pikromycin (Pik) system, preventing the formation of epimerized macrolactones. Here, we perform molecular dynamics simulations showing the epimerized hexaketide was accommodated within the Pik TE active site; however, intrinsic conformational preferences of the substrate resulted in predominately unproductive conformations, in agreement with the observed hydrolysis. Accordingly, we engineered the stereoselective Pik TE to yield a variant (TE(S148C)) with improved reaction kinetics and gain-of-function processing of an unnatural, epimerized hexaketide. Quantum mechanical comparison of model TE(S148C) and TE(WT) reaction coordinate diagrams revealed a change in mechanism from a stepwise addition–elimination (TE(WT)) to a lower energy concerted acyl substitution (TE(S148C)), accounting for the gain-of-function and improved reaction kinetics. Finally, we introduced the S148C mutation into a polyketide synthase module (PikAIII-TE) to impart increased substrate flexibility, enabling the production of diastereomeric macrolactones. American Chemical Society 2017-08-24 2017-09-27 /pmc/articles/PMC5617804/ /pubmed/28836768 http://dx.doi.org/10.1021/jacs.7b06436 Text en Copyright © 2017 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Koch, Aaron A. Hansen, Douglas A. Shende, Vikram V. Furan, Lawrence R. Houk, K. N. Jiménez-Osés, Gonzalo Sherman, David H. A Single Active Site Mutation in the Pikromycin Thioesterase Generates a More Effective Macrocyclization Catalyst |
title | A Single
Active Site Mutation in the Pikromycin Thioesterase
Generates a More Effective Macrocyclization Catalyst |
title_full | A Single
Active Site Mutation in the Pikromycin Thioesterase
Generates a More Effective Macrocyclization Catalyst |
title_fullStr | A Single
Active Site Mutation in the Pikromycin Thioesterase
Generates a More Effective Macrocyclization Catalyst |
title_full_unstemmed | A Single
Active Site Mutation in the Pikromycin Thioesterase
Generates a More Effective Macrocyclization Catalyst |
title_short | A Single
Active Site Mutation in the Pikromycin Thioesterase
Generates a More Effective Macrocyclization Catalyst |
title_sort | single
active site mutation in the pikromycin thioesterase
generates a more effective macrocyclization catalyst |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5617804/ https://www.ncbi.nlm.nih.gov/pubmed/28836768 http://dx.doi.org/10.1021/jacs.7b06436 |
work_keys_str_mv | AT kochaarona asingleactivesitemutationinthepikromycinthioesterasegeneratesamoreeffectivemacrocyclizationcatalyst AT hansendouglasa asingleactivesitemutationinthepikromycinthioesterasegeneratesamoreeffectivemacrocyclizationcatalyst AT shendevikramv asingleactivesitemutationinthepikromycinthioesterasegeneratesamoreeffectivemacrocyclizationcatalyst AT furanlawrencer asingleactivesitemutationinthepikromycinthioesterasegeneratesamoreeffectivemacrocyclizationcatalyst AT houkkn asingleactivesitemutationinthepikromycinthioesterasegeneratesamoreeffectivemacrocyclizationcatalyst AT jimenezosesgonzalo asingleactivesitemutationinthepikromycinthioesterasegeneratesamoreeffectivemacrocyclizationcatalyst AT shermandavidh asingleactivesitemutationinthepikromycinthioesterasegeneratesamoreeffectivemacrocyclizationcatalyst AT kochaarona singleactivesitemutationinthepikromycinthioesterasegeneratesamoreeffectivemacrocyclizationcatalyst AT hansendouglasa singleactivesitemutationinthepikromycinthioesterasegeneratesamoreeffectivemacrocyclizationcatalyst AT shendevikramv singleactivesitemutationinthepikromycinthioesterasegeneratesamoreeffectivemacrocyclizationcatalyst AT furanlawrencer singleactivesitemutationinthepikromycinthioesterasegeneratesamoreeffectivemacrocyclizationcatalyst AT houkkn singleactivesitemutationinthepikromycinthioesterasegeneratesamoreeffectivemacrocyclizationcatalyst AT jimenezosesgonzalo singleactivesitemutationinthepikromycinthioesterasegeneratesamoreeffectivemacrocyclizationcatalyst AT shermandavidh singleactivesitemutationinthepikromycinthioesterasegeneratesamoreeffectivemacrocyclizationcatalyst |