Cargando…

A Single Active Site Mutation in the Pikromycin Thioesterase Generates a More Effective Macrocyclization Catalyst

[Image: see text] Macrolactonization of natural product analogs presents a significant challenge to both biosynthetic assembly and synthetic chemistry. In the preceding paper, we identified a thioesterase (TE) domain catalytic bottleneck processing unnatural substrates in the pikromycin (Pik) system...

Descripción completa

Detalles Bibliográficos
Autores principales: Koch, Aaron A., Hansen, Douglas A., Shende, Vikram V., Furan, Lawrence R., Houk, K. N., Jiménez-Osés, Gonzalo, Sherman, David H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2017
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5617804/
https://www.ncbi.nlm.nih.gov/pubmed/28836768
http://dx.doi.org/10.1021/jacs.7b06436
_version_ 1783267047589806080
author Koch, Aaron A.
Hansen, Douglas A.
Shende, Vikram V.
Furan, Lawrence R.
Houk, K. N.
Jiménez-Osés, Gonzalo
Sherman, David H.
author_facet Koch, Aaron A.
Hansen, Douglas A.
Shende, Vikram V.
Furan, Lawrence R.
Houk, K. N.
Jiménez-Osés, Gonzalo
Sherman, David H.
author_sort Koch, Aaron A.
collection PubMed
description [Image: see text] Macrolactonization of natural product analogs presents a significant challenge to both biosynthetic assembly and synthetic chemistry. In the preceding paper, we identified a thioesterase (TE) domain catalytic bottleneck processing unnatural substrates in the pikromycin (Pik) system, preventing the formation of epimerized macrolactones. Here, we perform molecular dynamics simulations showing the epimerized hexaketide was accommodated within the Pik TE active site; however, intrinsic conformational preferences of the substrate resulted in predominately unproductive conformations, in agreement with the observed hydrolysis. Accordingly, we engineered the stereoselective Pik TE to yield a variant (TE(S148C)) with improved reaction kinetics and gain-of-function processing of an unnatural, epimerized hexaketide. Quantum mechanical comparison of model TE(S148C) and TE(WT) reaction coordinate diagrams revealed a change in mechanism from a stepwise addition–elimination (TE(WT)) to a lower energy concerted acyl substitution (TE(S148C)), accounting for the gain-of-function and improved reaction kinetics. Finally, we introduced the S148C mutation into a polyketide synthase module (PikAIII-TE) to impart increased substrate flexibility, enabling the production of diastereomeric macrolactones.
format Online
Article
Text
id pubmed-5617804
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-56178042018-09-27 A Single Active Site Mutation in the Pikromycin Thioesterase Generates a More Effective Macrocyclization Catalyst Koch, Aaron A. Hansen, Douglas A. Shende, Vikram V. Furan, Lawrence R. Houk, K. N. Jiménez-Osés, Gonzalo Sherman, David H. J Am Chem Soc [Image: see text] Macrolactonization of natural product analogs presents a significant challenge to both biosynthetic assembly and synthetic chemistry. In the preceding paper, we identified a thioesterase (TE) domain catalytic bottleneck processing unnatural substrates in the pikromycin (Pik) system, preventing the formation of epimerized macrolactones. Here, we perform molecular dynamics simulations showing the epimerized hexaketide was accommodated within the Pik TE active site; however, intrinsic conformational preferences of the substrate resulted in predominately unproductive conformations, in agreement with the observed hydrolysis. Accordingly, we engineered the stereoselective Pik TE to yield a variant (TE(S148C)) with improved reaction kinetics and gain-of-function processing of an unnatural, epimerized hexaketide. Quantum mechanical comparison of model TE(S148C) and TE(WT) reaction coordinate diagrams revealed a change in mechanism from a stepwise addition–elimination (TE(WT)) to a lower energy concerted acyl substitution (TE(S148C)), accounting for the gain-of-function and improved reaction kinetics. Finally, we introduced the S148C mutation into a polyketide synthase module (PikAIII-TE) to impart increased substrate flexibility, enabling the production of diastereomeric macrolactones. American Chemical Society 2017-08-24 2017-09-27 /pmc/articles/PMC5617804/ /pubmed/28836768 http://dx.doi.org/10.1021/jacs.7b06436 Text en Copyright © 2017 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Koch, Aaron A.
Hansen, Douglas A.
Shende, Vikram V.
Furan, Lawrence R.
Houk, K. N.
Jiménez-Osés, Gonzalo
Sherman, David H.
A Single Active Site Mutation in the Pikromycin Thioesterase Generates a More Effective Macrocyclization Catalyst
title A Single Active Site Mutation in the Pikromycin Thioesterase Generates a More Effective Macrocyclization Catalyst
title_full A Single Active Site Mutation in the Pikromycin Thioesterase Generates a More Effective Macrocyclization Catalyst
title_fullStr A Single Active Site Mutation in the Pikromycin Thioesterase Generates a More Effective Macrocyclization Catalyst
title_full_unstemmed A Single Active Site Mutation in the Pikromycin Thioesterase Generates a More Effective Macrocyclization Catalyst
title_short A Single Active Site Mutation in the Pikromycin Thioesterase Generates a More Effective Macrocyclization Catalyst
title_sort single active site mutation in the pikromycin thioesterase generates a more effective macrocyclization catalyst
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5617804/
https://www.ncbi.nlm.nih.gov/pubmed/28836768
http://dx.doi.org/10.1021/jacs.7b06436
work_keys_str_mv AT kochaarona asingleactivesitemutationinthepikromycinthioesterasegeneratesamoreeffectivemacrocyclizationcatalyst
AT hansendouglasa asingleactivesitemutationinthepikromycinthioesterasegeneratesamoreeffectivemacrocyclizationcatalyst
AT shendevikramv asingleactivesitemutationinthepikromycinthioesterasegeneratesamoreeffectivemacrocyclizationcatalyst
AT furanlawrencer asingleactivesitemutationinthepikromycinthioesterasegeneratesamoreeffectivemacrocyclizationcatalyst
AT houkkn asingleactivesitemutationinthepikromycinthioesterasegeneratesamoreeffectivemacrocyclizationcatalyst
AT jimenezosesgonzalo asingleactivesitemutationinthepikromycinthioesterasegeneratesamoreeffectivemacrocyclizationcatalyst
AT shermandavidh asingleactivesitemutationinthepikromycinthioesterasegeneratesamoreeffectivemacrocyclizationcatalyst
AT kochaarona singleactivesitemutationinthepikromycinthioesterasegeneratesamoreeffectivemacrocyclizationcatalyst
AT hansendouglasa singleactivesitemutationinthepikromycinthioesterasegeneratesamoreeffectivemacrocyclizationcatalyst
AT shendevikramv singleactivesitemutationinthepikromycinthioesterasegeneratesamoreeffectivemacrocyclizationcatalyst
AT furanlawrencer singleactivesitemutationinthepikromycinthioesterasegeneratesamoreeffectivemacrocyclizationcatalyst
AT houkkn singleactivesitemutationinthepikromycinthioesterasegeneratesamoreeffectivemacrocyclizationcatalyst
AT jimenezosesgonzalo singleactivesitemutationinthepikromycinthioesterasegeneratesamoreeffectivemacrocyclizationcatalyst
AT shermandavidh singleactivesitemutationinthepikromycinthioesterasegeneratesamoreeffectivemacrocyclizationcatalyst