Cargando…
The effect of fear of falling on vestibular feedback control of balance
Vestibular sensation contributes to cervical‐head stabilization and fall prevention. To what extent fear of falling influences the associated vestibular feedback processes is currently undetermined. We used galanic vestibular stimulation (GVS) to induce vestibular reflexes while participants stood a...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5617925/ https://www.ncbi.nlm.nih.gov/pubmed/28963123 http://dx.doi.org/10.14814/phy2.13391 |
Sumario: | Vestibular sensation contributes to cervical‐head stabilization and fall prevention. To what extent fear of falling influences the associated vestibular feedback processes is currently undetermined. We used galanic vestibular stimulation (GVS) to induce vestibular reflexes while participants stood at ground level and on a narrow walkway at 3.85 m height to induce fear of falling. Fear was confirmed by questionnaires and elevated skin conductance. Full‐body kinematics was measured to differentiate the whole‐body centre of mass response (CoM) into component parts (cervical, axial trunk, appendicular short latency, and medium latency). We studied the effect of fear of falling on each component to discern their underlying mechanisms. Statistical parametric mapping analysis provided sensitive discrimination of early GVS and height effects. Kinematic analysis revealed responses at 1 mA stimulation previously believed marginal through EMG and force plate analysis. The GVS response comprised a rapid, anode‐directed cervical‐head acceleration, a short‐latency cathode‐directed acceleration (cathodal buckling) of lower extremities and pelvis, an anode‐directed upper thorax acceleration, and subsequently a medium‐latency anode‐directed acceleration of all body parts. At height, head and upper thorax early acceleration were unaltered, however, short‐latency lower extremity acceleration was increased. The effect of height on balance was a decreased duration and increased rate of change in the CoM acceleration pattern. These results demonstrate that fear modifies vestibular control of balance, whereas cervical‐head stabilization is governed by different mechanisms unaffected by fear of falling. The mechanical pattern of cathodal buckling and its modulation by fear of falling both support the hypothesis that short‐latency responses contribute to regulate balance. |
---|