Cargando…

Tracing the Repertoire of Promiscuous Enzymes along the Metabolic Pathways in Archaeal Organisms

The metabolic pathways that carry out the biochemical transformations sustaining life depend on the efficiency of their associated enzymes. In recent years, it has become clear that promiscuous enzymes have played an important role in the function and evolution of metabolism. In this work we analyze...

Descripción completa

Detalles Bibliográficos
Autores principales: Martínez-Núñez, Mario Alberto, Rodríguez-Escamilla, Zuemy, Rodríguez-Vázquez, Katya, Pérez-Rueda, Ernesto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5617955/
https://www.ncbi.nlm.nih.gov/pubmed/28703743
http://dx.doi.org/10.3390/life7030030
Descripción
Sumario:The metabolic pathways that carry out the biochemical transformations sustaining life depend on the efficiency of their associated enzymes. In recent years, it has become clear that promiscuous enzymes have played an important role in the function and evolution of metabolism. In this work we analyze the repertoire of promiscuous enzymes in 89 non-redundant genomes of the Archaea cellular domain. Promiscuous enzymes are defined as those proteins with two or more different Enzyme Commission (E.C.) numbers, according the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. From this analysis, it was found that the fraction of promiscuous enzymes is lower in Archaea than in Bacteria. A greater diversity of superfamily domains is associated with promiscuous enzymes compared to specialized enzymes, both in Archaea and Bacteria, and there is an enrichment of substrate promiscuity rather than catalytic promiscuity in the archaeal enzymes. Finally, the presence of promiscuous enzymes in the metabolic pathways was found to be heterogeneously distributed at the domain level and in the phyla that make up the Archaea. These analyses increase our understanding of promiscuous enzymes and provide additional clues to the evolution of metabolism in Archaea.