Cargando…
A Novel Impedance Biosensor for Measurement of Trans-Epithelial Resistance in Cells Cultured on Nanofiber Scaffolds
Nanofibrous scaffolds provide high surface area for cell attachment, and resemble the structure of the collagen fibers which naturally occur in the basement membrane and extracellular matrix. A label free and non-destructive method of assessing the interaction of cell tissue and scaffolds aids in th...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5618041/ https://www.ncbi.nlm.nih.gov/pubmed/28858219 http://dx.doi.org/10.3390/bios7030035 |
_version_ | 1783267098575765504 |
---|---|
author | Schramm, Robert A. Koslow, Matthew H. Nelson, Deirdre A. Larsen, Melinda Castracane, James |
author_facet | Schramm, Robert A. Koslow, Matthew H. Nelson, Deirdre A. Larsen, Melinda Castracane, James |
author_sort | Schramm, Robert A. |
collection | PubMed |
description | Nanofibrous scaffolds provide high surface area for cell attachment, and resemble the structure of the collagen fibers which naturally occur in the basement membrane and extracellular matrix. A label free and non-destructive method of assessing the interaction of cell tissue and scaffolds aids in the ability to discern the effective quality and magnitude of any scaffold modifications. Impedance cell spectroscopy is a biosensing method that employs a functional approach to assessing the cell monolayer. The electrical impedance barrier function of a cell monolayer represents the level of restriction to diffusion of charged species between all adjacent cells across an entire contiguous cellular monolayer. The impedance signals from many individual paracellular pathways contribute to the bulk measurement of the whole monolayer barrier function. However, the scaffold substrate must be entirely porous in order to be used with electrochemical cell impedance spectroscopy (ECIS) and cells must be closely situated to the electrodes. For purposes of evaluating cell-scaffold constructs for tissue engineering, non-invasive evaluation of cell properties while seeded on scaffolds is critical. A Transwell-type assay makes a measurement across a semi-permeable membrane, using electrodes placed on opposing sides of the membrane immersed in fluid. It was found that by suspending a nanofiber scaffold across a Transwell aperture, it is possible to integrate a fully functional nanofiber tissue scaffold with the ECIS Transwell apparatus. Salivary epithelial cells were grown on the nanofiber scaffolds and tight junction formation was evaluated using ECIS measurements in parallel with immunostaining and confocal imaging. The trans-epithelial resistance increased coordinate with cell coverage, culminating with a cell monolayer, at which point the tight junction proteins assemble and strengthen, reaching the peak signal. These studies demonstrate that ECIS can be used to evaluate tight junction formation in cells grown on nanofiber scaffolds and on effects of scaffold conditions on cells, thus providing useful biological feedback to inform superior scaffold designs. |
format | Online Article Text |
id | pubmed-5618041 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-56180412017-09-29 A Novel Impedance Biosensor for Measurement of Trans-Epithelial Resistance in Cells Cultured on Nanofiber Scaffolds Schramm, Robert A. Koslow, Matthew H. Nelson, Deirdre A. Larsen, Melinda Castracane, James Biosensors (Basel) Article Nanofibrous scaffolds provide high surface area for cell attachment, and resemble the structure of the collagen fibers which naturally occur in the basement membrane and extracellular matrix. A label free and non-destructive method of assessing the interaction of cell tissue and scaffolds aids in the ability to discern the effective quality and magnitude of any scaffold modifications. Impedance cell spectroscopy is a biosensing method that employs a functional approach to assessing the cell monolayer. The electrical impedance barrier function of a cell monolayer represents the level of restriction to diffusion of charged species between all adjacent cells across an entire contiguous cellular monolayer. The impedance signals from many individual paracellular pathways contribute to the bulk measurement of the whole monolayer barrier function. However, the scaffold substrate must be entirely porous in order to be used with electrochemical cell impedance spectroscopy (ECIS) and cells must be closely situated to the electrodes. For purposes of evaluating cell-scaffold constructs for tissue engineering, non-invasive evaluation of cell properties while seeded on scaffolds is critical. A Transwell-type assay makes a measurement across a semi-permeable membrane, using electrodes placed on opposing sides of the membrane immersed in fluid. It was found that by suspending a nanofiber scaffold across a Transwell aperture, it is possible to integrate a fully functional nanofiber tissue scaffold with the ECIS Transwell apparatus. Salivary epithelial cells were grown on the nanofiber scaffolds and tight junction formation was evaluated using ECIS measurements in parallel with immunostaining and confocal imaging. The trans-epithelial resistance increased coordinate with cell coverage, culminating with a cell monolayer, at which point the tight junction proteins assemble and strengthen, reaching the peak signal. These studies demonstrate that ECIS can be used to evaluate tight junction formation in cells grown on nanofiber scaffolds and on effects of scaffold conditions on cells, thus providing useful biological feedback to inform superior scaffold designs. MDPI 2017-08-31 /pmc/articles/PMC5618041/ /pubmed/28858219 http://dx.doi.org/10.3390/bios7030035 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Schramm, Robert A. Koslow, Matthew H. Nelson, Deirdre A. Larsen, Melinda Castracane, James A Novel Impedance Biosensor for Measurement of Trans-Epithelial Resistance in Cells Cultured on Nanofiber Scaffolds |
title | A Novel Impedance Biosensor for Measurement of Trans-Epithelial Resistance in Cells Cultured on Nanofiber Scaffolds |
title_full | A Novel Impedance Biosensor for Measurement of Trans-Epithelial Resistance in Cells Cultured on Nanofiber Scaffolds |
title_fullStr | A Novel Impedance Biosensor for Measurement of Trans-Epithelial Resistance in Cells Cultured on Nanofiber Scaffolds |
title_full_unstemmed | A Novel Impedance Biosensor for Measurement of Trans-Epithelial Resistance in Cells Cultured on Nanofiber Scaffolds |
title_short | A Novel Impedance Biosensor for Measurement of Trans-Epithelial Resistance in Cells Cultured on Nanofiber Scaffolds |
title_sort | novel impedance biosensor for measurement of trans-epithelial resistance in cells cultured on nanofiber scaffolds |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5618041/ https://www.ncbi.nlm.nih.gov/pubmed/28858219 http://dx.doi.org/10.3390/bios7030035 |
work_keys_str_mv | AT schrammroberta anovelimpedancebiosensorformeasurementoftransepithelialresistanceincellsculturedonnanofiberscaffolds AT koslowmatthewh anovelimpedancebiosensorformeasurementoftransepithelialresistanceincellsculturedonnanofiberscaffolds AT nelsondeirdrea anovelimpedancebiosensorformeasurementoftransepithelialresistanceincellsculturedonnanofiberscaffolds AT larsenmelinda anovelimpedancebiosensorformeasurementoftransepithelialresistanceincellsculturedonnanofiberscaffolds AT castracanejames anovelimpedancebiosensorformeasurementoftransepithelialresistanceincellsculturedonnanofiberscaffolds AT schrammroberta novelimpedancebiosensorformeasurementoftransepithelialresistanceincellsculturedonnanofiberscaffolds AT koslowmatthewh novelimpedancebiosensorformeasurementoftransepithelialresistanceincellsculturedonnanofiberscaffolds AT nelsondeirdrea novelimpedancebiosensorformeasurementoftransepithelialresistanceincellsculturedonnanofiberscaffolds AT larsenmelinda novelimpedancebiosensorformeasurementoftransepithelialresistanceincellsculturedonnanofiberscaffolds AT castracanejames novelimpedancebiosensorformeasurementoftransepithelialresistanceincellsculturedonnanofiberscaffolds |