Cargando…
Metal Ion-Loaded Nanofibre Matrices for Calcification Inhibition in Polyurethane Implants
Pathologic calcification leads to structural deterioration of implant materials via stiffening, stress cracking, and other structural disintegration mechanisms, and the effect can be critical for implants intended for long-term or permanent implantation. This study demonstrates the potential of usin...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5618273/ https://www.ncbi.nlm.nih.gov/pubmed/28644382 http://dx.doi.org/10.3390/jfb8030022 |
_version_ | 1783267148634783744 |
---|---|
author | Singh, Charanpreet Wang, Xungai |
author_facet | Singh, Charanpreet Wang, Xungai |
author_sort | Singh, Charanpreet |
collection | PubMed |
description | Pathologic calcification leads to structural deterioration of implant materials via stiffening, stress cracking, and other structural disintegration mechanisms, and the effect can be critical for implants intended for long-term or permanent implantation. This study demonstrates the potential of using specific metal ions (MI)s for inhibiting pathological calcification in polyurethane (PU) implants. The hypothesis of using MIs as anti-calcification agents was based on the natural calcium-antagonist role of Mg(2+) ions in human body, and the anti-calcification effect of Fe(3+) ions in bio-prosthetic heart valves has previously been confirmed. In vitro calcification results indicated that a protective covering mesh of MI-doped PU can prevent calcification by preventing hydroxyapatite crystal growth. However, microstructure and mechanical characterisation revealed oxidative degradation effects from Fe(3+) ions on the mechanical properties of the PU matrix. Therefore, from both a mechanical and anti-calcification effects point of view, Mg(2+) ions are more promising candidates than Fe(3+) ions. The in vitro MI release experiments demonstrated that PU microphase separation and the structural design of PU-MI matrices were important determinants of release kinetics. Increased phase separation in doped PU assisted in consistent long-term release of dissolved MIs from both hard and soft segments of the PU. The use of a composite-sandwich mesh design prevented an initial burst release which improved the late (>20 days) release rate of MIs from the matrix. |
format | Online Article Text |
id | pubmed-5618273 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-56182732017-09-29 Metal Ion-Loaded Nanofibre Matrices for Calcification Inhibition in Polyurethane Implants Singh, Charanpreet Wang, Xungai J Funct Biomater Article Pathologic calcification leads to structural deterioration of implant materials via stiffening, stress cracking, and other structural disintegration mechanisms, and the effect can be critical for implants intended for long-term or permanent implantation. This study demonstrates the potential of using specific metal ions (MI)s for inhibiting pathological calcification in polyurethane (PU) implants. The hypothesis of using MIs as anti-calcification agents was based on the natural calcium-antagonist role of Mg(2+) ions in human body, and the anti-calcification effect of Fe(3+) ions in bio-prosthetic heart valves has previously been confirmed. In vitro calcification results indicated that a protective covering mesh of MI-doped PU can prevent calcification by preventing hydroxyapatite crystal growth. However, microstructure and mechanical characterisation revealed oxidative degradation effects from Fe(3+) ions on the mechanical properties of the PU matrix. Therefore, from both a mechanical and anti-calcification effects point of view, Mg(2+) ions are more promising candidates than Fe(3+) ions. The in vitro MI release experiments demonstrated that PU microphase separation and the structural design of PU-MI matrices were important determinants of release kinetics. Increased phase separation in doped PU assisted in consistent long-term release of dissolved MIs from both hard and soft segments of the PU. The use of a composite-sandwich mesh design prevented an initial burst release which improved the late (>20 days) release rate of MIs from the matrix. MDPI 2017-06-23 /pmc/articles/PMC5618273/ /pubmed/28644382 http://dx.doi.org/10.3390/jfb8030022 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Singh, Charanpreet Wang, Xungai Metal Ion-Loaded Nanofibre Matrices for Calcification Inhibition in Polyurethane Implants |
title | Metal Ion-Loaded Nanofibre Matrices for Calcification Inhibition in Polyurethane Implants |
title_full | Metal Ion-Loaded Nanofibre Matrices for Calcification Inhibition in Polyurethane Implants |
title_fullStr | Metal Ion-Loaded Nanofibre Matrices for Calcification Inhibition in Polyurethane Implants |
title_full_unstemmed | Metal Ion-Loaded Nanofibre Matrices for Calcification Inhibition in Polyurethane Implants |
title_short | Metal Ion-Loaded Nanofibre Matrices for Calcification Inhibition in Polyurethane Implants |
title_sort | metal ion-loaded nanofibre matrices for calcification inhibition in polyurethane implants |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5618273/ https://www.ncbi.nlm.nih.gov/pubmed/28644382 http://dx.doi.org/10.3390/jfb8030022 |
work_keys_str_mv | AT singhcharanpreet metalionloadednanofibrematricesforcalcificationinhibitioninpolyurethaneimplants AT wangxungai metalionloadednanofibrematricesforcalcificationinhibitioninpolyurethaneimplants |