Cargando…

An Optimum Specimen Geometry for Equibiaxial Experimental Tests of Reinforced Magnetorheological Elastomers with Iron Micro- and Nanoparticles

The aim of this paper focused on obtaining the optimum cruciform geometry of reinforced magnetorheological elastomers (MRE) to perform homogeneous equibiaxial deformation tests, by using optimization algorithms and Finite Element Method (FEM) simulations. To validate the proposed specimen geometry,...

Descripción completa

Detalles Bibliográficos
Autores principales: Palacios-Pineda, Luis Manuel, Perales-Martínez, Imperio Anel, Moreno-Guerra, Mario Regino, Elías-Zúñiga, Alex
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5618365/
https://www.ncbi.nlm.nih.gov/pubmed/28869523
http://dx.doi.org/10.3390/nano7090254
Descripción
Sumario:The aim of this paper focused on obtaining the optimum cruciform geometry of reinforced magnetorheological elastomers (MRE) to perform homogeneous equibiaxial deformation tests, by using optimization algorithms and Finite Element Method (FEM) simulations. To validate the proposed specimen geometry, a digital image correlation (DIC) system was used to compare experimental result measurements with respect to those of FEM simulations. Moreover, and based on the optimum cruciform geometry, specimens produced from MRE reinforced with carbonyl-iron microparticles or iron nanoparticles were subjected to equibiaxial loading and unloading cycles to examine their Mullin’s effect and their residual strain deformations.