Cargando…

Impact of Novel Prebiotic Galacto-Oligosaccharides on Various Biomarkers of Colorectal Cancer in Wister Rats

Colorectal cancer (CRC) is one of the leading causes of cancer deaths around the globe. Bioactive food ingredients such as prebiotics have protective potential in colon cancer. Data on galacto-oligosaccharides (GalOS) against CRC are very limited and GalOS used in this study have β-1,6 and β-1,3 as...

Descripción completa

Detalles Bibliográficos
Autores principales: Qamar, Tahir Rasool, Iqbal, Sanaullah, Syed, Fatima, Nasir, Muhammad, Rehman, Habib, Iqbal, Muhammad Aamir, Liu, Rui Hai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5618473/
https://www.ncbi.nlm.nih.gov/pubmed/28858205
http://dx.doi.org/10.3390/ijms18091785
Descripción
Sumario:Colorectal cancer (CRC) is one of the leading causes of cancer deaths around the globe. Bioactive food ingredients such as prebiotics have protective potential in colon cancer. Data on galacto-oligosaccharides (GalOS) against CRC are very limited and GalOS used in this study have β-1,6 and β-1,3 as major glycosidic linkages and, to our best knowledge, were never used before against any cancer treatment. This study aims to investigate the protective role of novel GalOS against various biomarkers of CRC including aberrant crypt foci (ACF), bacterial enzymes and short chain fatty acids (SCFA) in a rodent model induced with 1,2-dimethylhydrazine dihydrochloride (DMH). Inulin group was taken as positive control in present study to compare novel GalOS protective effects. GalOS doses of 76–151 mg and inulin doses of 114 mg were given to different groups treated with DMH. Results showed that ACF formation was significantly (p ≤ 0.05) less in high dose GalOS group (27.3%). GalOS also had protective effects against DMH-induced body weight loss and showed higher level of cecal and fecal SCFA (acetate, propionate and butyrate). High doses of GalOS also resulted in significant (p ≤ 0.05) reduction of bacterial enzymatic activities. Increased populations of beneficial bacteria (bifidobacteria and lactobacilli) and decreased concentrations of harmful bacteria were observed in all prebiotics treatment groups. It can be concluded that novel GalOS exhibit robust protective activity against ACF formation in vivo.