Cargando…
iTRAQ-Based Quantitative Proteomics Analysis on Rice Anther Responding to High Temperature
As one of the most important crops, rice provides the major food for more than half of the world population. However, its production is limited by many environmental factors, among which high temperature stress (HS) frequently occurs during anthesis and reduces its spikelet fertility. To explore the...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5618475/ https://www.ncbi.nlm.nih.gov/pubmed/28832496 http://dx.doi.org/10.3390/ijms18091811 |
_version_ | 1783267194662027264 |
---|---|
author | Mu, Qilin Zhang, Wenying Zhang, Yunbo Yan, Haoliang Liu, Ke Matsui, Tsutomu Tian, Xiaohai Yang, Pingfang |
author_facet | Mu, Qilin Zhang, Wenying Zhang, Yunbo Yan, Haoliang Liu, Ke Matsui, Tsutomu Tian, Xiaohai Yang, Pingfang |
author_sort | Mu, Qilin |
collection | PubMed |
description | As one of the most important crops, rice provides the major food for more than half of the world population. However, its production is limited by many environmental factors, among which high temperature stress (HS) frequently occurs during anthesis and reduces its spikelet fertility. To explore the mechanism of HS tolerance in rice, we conducted a comparative proteomics analysis on the anthers between HS resistant and sensitive cultivars under different levels of high temperature. Under the same HS treatment, the resistant cultivar showed much higher spikelet fertility than the sensitive cultivar. Proteomic data showed that HS lead to the degradation of ribosomal proteins in the sensitive cultivar but not in the resistant one, which might result in the injury of protein biosynthetic machinery. In contrast, HS induced the increase of sHSP, β-expansins and lipid transfer proteins in the resistant cultivar, which might contribute to its ability to tolerate HS. The results provide some new insights into the mechanism of rice HS response. |
format | Online Article Text |
id | pubmed-5618475 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-56184752017-09-30 iTRAQ-Based Quantitative Proteomics Analysis on Rice Anther Responding to High Temperature Mu, Qilin Zhang, Wenying Zhang, Yunbo Yan, Haoliang Liu, Ke Matsui, Tsutomu Tian, Xiaohai Yang, Pingfang Int J Mol Sci Article As one of the most important crops, rice provides the major food for more than half of the world population. However, its production is limited by many environmental factors, among which high temperature stress (HS) frequently occurs during anthesis and reduces its spikelet fertility. To explore the mechanism of HS tolerance in rice, we conducted a comparative proteomics analysis on the anthers between HS resistant and sensitive cultivars under different levels of high temperature. Under the same HS treatment, the resistant cultivar showed much higher spikelet fertility than the sensitive cultivar. Proteomic data showed that HS lead to the degradation of ribosomal proteins in the sensitive cultivar but not in the resistant one, which might result in the injury of protein biosynthetic machinery. In contrast, HS induced the increase of sHSP, β-expansins and lipid transfer proteins in the resistant cultivar, which might contribute to its ability to tolerate HS. The results provide some new insights into the mechanism of rice HS response. MDPI 2017-08-23 /pmc/articles/PMC5618475/ /pubmed/28832496 http://dx.doi.org/10.3390/ijms18091811 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Mu, Qilin Zhang, Wenying Zhang, Yunbo Yan, Haoliang Liu, Ke Matsui, Tsutomu Tian, Xiaohai Yang, Pingfang iTRAQ-Based Quantitative Proteomics Analysis on Rice Anther Responding to High Temperature |
title | iTRAQ-Based Quantitative Proteomics Analysis on Rice Anther Responding to High Temperature |
title_full | iTRAQ-Based Quantitative Proteomics Analysis on Rice Anther Responding to High Temperature |
title_fullStr | iTRAQ-Based Quantitative Proteomics Analysis on Rice Anther Responding to High Temperature |
title_full_unstemmed | iTRAQ-Based Quantitative Proteomics Analysis on Rice Anther Responding to High Temperature |
title_short | iTRAQ-Based Quantitative Proteomics Analysis on Rice Anther Responding to High Temperature |
title_sort | itraq-based quantitative proteomics analysis on rice anther responding to high temperature |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5618475/ https://www.ncbi.nlm.nih.gov/pubmed/28832496 http://dx.doi.org/10.3390/ijms18091811 |
work_keys_str_mv | AT muqilin itraqbasedquantitativeproteomicsanalysisonriceantherrespondingtohightemperature AT zhangwenying itraqbasedquantitativeproteomicsanalysisonriceantherrespondingtohightemperature AT zhangyunbo itraqbasedquantitativeproteomicsanalysisonriceantherrespondingtohightemperature AT yanhaoliang itraqbasedquantitativeproteomicsanalysisonriceantherrespondingtohightemperature AT liuke itraqbasedquantitativeproteomicsanalysisonriceantherrespondingtohightemperature AT matsuitsutomu itraqbasedquantitativeproteomicsanalysisonriceantherrespondingtohightemperature AT tianxiaohai itraqbasedquantitativeproteomicsanalysisonriceantherrespondingtohightemperature AT yangpingfang itraqbasedquantitativeproteomicsanalysisonriceantherrespondingtohightemperature |