Cargando…
Behind Resveratrol Stabilization by Carboxymethylated (1,3/1,6)-β-d-Glucan: Does the Polyphenol Play a Role in Polymer Structural Organization?
Resveratrol stability in solution can be improved by combining the polyphenol with carboxymethylated (1,3/1,6)-β-d-glucan (CM-glucan), a carbohydrate polymer widely used in the food and pharmaceutical industries. The present work was undertaken to elucidate the mechanism behind this stabilizing effe...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5618655/ https://www.ncbi.nlm.nih.gov/pubmed/32961650 http://dx.doi.org/10.3390/ijms18092006 |
Sumario: | Resveratrol stability in solution can be improved by combining the polyphenol with carboxymethylated (1,3/1,6)-β-d-glucan (CM-glucan), a carbohydrate polymer widely used in the food and pharmaceutical industries. The present work was undertaken to elucidate the mechanism behind this stabilizing effect. The supramolecular structural, physico-chemical and morphological features of the CM-glucan/resveratrol complex have been studied under different physical and chemical stimuli by means of spectroscopic techniques, microscopy and physical methods such as UV-Visible spectroscopy (UV-Vis), spectrofluorimetry, Circular Dichroism (CD), Infrared spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC), Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). Our experimental data indicate that CM-glucan conformational organized architecture in aqueous solution is enhanced in the presence of resveratrol, suggesting that the polyphenol is able to confer a high degree of order to the polymer by a probable cooperative structural organization that results in a long term stabilization for the polyphenol. |
---|