Cargando…
Gene selection tool (GST): A R-based tool for genetic disorders based on the sliding-window proportion test using whole-exome sequencing data
Whole-exome sequencing (WES) can identify causative mutations in hereditary diseases. However, WES data might have a large candidate variant list, including false positives. Moreover, in families, it is more difficult to select disease-associated variants because many variants are shared among membe...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5619773/ https://www.ncbi.nlm.nih.gov/pubmed/28957403 http://dx.doi.org/10.1371/journal.pone.0185514 |
Sumario: | Whole-exome sequencing (WES) can identify causative mutations in hereditary diseases. However, WES data might have a large candidate variant list, including false positives. Moreover, in families, it is more difficult to select disease-associated variants because many variants are shared among members. To reduce false positives and extract accurate candidates, we used a multilocus variant instead of a single-locus variant (SNV). We set up a specific window to analyze the multilocus variant and devised a sliding-window approach to observe all variants. We developed the gene selection tool (GST) based on proportion tests for linkage analysis using WES data. This tool is R program coded and has high sensitivity. We tested our code to find the gene for hereditary spastic paraplegia using SNVs from a specific family and identified the gene known to cause the disease in a significant gene list. The list identified other genes that might be associated with the disease. |
---|