Cargando…
Discriminative Scale Learning (DiScrn): Applications to Prostate Cancer Detection from MRI and Needle Biopsies
There has been recent substantial interest in extracting sub-visual features from medical images for improved disease characterization compared to what might be achievable via visual inspection alone. Features such as Haralick and Gabor can provide a multi-scale representation of the original image...
Autores principales: | Wang, Haibo, Viswanath, Satish, Madabhushi, Anant |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5620056/ https://www.ncbi.nlm.nih.gov/pubmed/28959011 http://dx.doi.org/10.1038/s41598-017-12569-z |
Ejemplares similares
-
Co-Registration of ex vivo Surgical Histopathology and in vivo T2 weighted MRI of the Prostate via multi-scale spectral embedding representation
por: Li, Lin, et al.
Publicado: (2017) -
Predicting Classifier Performance with Limited Training Data: Applications to Computer-Aided Diagnosis in Breast and Prostate Cancer
por: Basavanhally, Ajay, et al.
Publicado: (2015) -
Radiomics based targeted radiotherapy planning (Rad-TRaP): a computational framework for prostate cancer treatment planning with MRI
por: Shiradkar, Rakesh, et al.
Publicado: (2016) -
Consensus embedding: theory, algorithms and application to segmentation and classification of biomedical data
por: Viswanath, Satish, et al.
Publicado: (2012) -
VAP‐SCRN1 interaction regulates dynamic endoplasmic reticulum remodeling and presynaptic function
por: Lindhout, Feline W, et al.
Publicado: (2019)