Cargando…
Onset of static and dynamic universality among molecular models of polymers
A quantitatively accurate prediction of properties for entangled polymers is a long-standing challenge that must be addressed to enable efficient development of these materials. The complex nature of polymers is the fundamental origin of this challenge. Specifically, the chemistry, structure, and dy...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5620073/ https://www.ncbi.nlm.nih.gov/pubmed/28959052 http://dx.doi.org/10.1038/s41598-017-08501-0 |
Sumario: | A quantitatively accurate prediction of properties for entangled polymers is a long-standing challenge that must be addressed to enable efficient development of these materials. The complex nature of polymers is the fundamental origin of this challenge. Specifically, the chemistry, structure, and dynamics at the atomistic scale affect properties at the meso and macro scales. Therefore, quantitative predictions must start from atomistic molecular dynamics (AMD) simulations. Combined use of atomistic and coarse-grained (CG) models is a promising approach to estimate long-timescale behavior of entangled polymers. However, a systematic coarse-graining is still to be done for bridging the gap of length and time scales while retaining atomistic characteristics. Here we examine the gaps among models, using a generic mapping scheme based on power laws that are closely related to universality in polymer structure and dynamics. The scheme reveals the characteristic length and time for the onset of universality between the vastly different scales of an atomistic model of polyethylene and the bead-spring Kremer–Grest (KG) model. The mapping between CG model of polystyrene and the KG model demonstrates the fast onset of universality, and polymer dynamics up to the subsecond time scale are observed. Thus, quantitatively traceable timescales of polymer MD simulations can be significantly increased. |
---|