Cargando…

HIV-1 Gp120 clade B/C induces a GRP78 driven cytoprotective mechanism in astrocytoma

HIV-1 clades are known to be one of the key factors implicated in modulating HIV-associated neurocognitive disorders. HIV-1 B and C clades account for the majority of HIV-1 infections, clade B being the most neuropathogenic. The mechanisms behind HIV-mediated neuropathogenesis remain the subject of...

Descripción completa

Detalles Bibliográficos
Autores principales: López, Sheila N., Rodríguez-Valentín, Madeline, Rivera, Mariela, Rodríguez, Maridaliz, Babu, Mohan, Cubano, Luis A., Xiong, Huangui, Wang, Guangdi, Kucheryavykh, Lilia, Boukli, Nawal M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5620267/
https://www.ncbi.nlm.nih.gov/pubmed/28978127
http://dx.doi.org/10.18632/oncotarget.19474
Descripción
Sumario:HIV-1 clades are known to be one of the key factors implicated in modulating HIV-associated neurocognitive disorders. HIV-1 B and C clades account for the majority of HIV-1 infections, clade B being the most neuropathogenic. The mechanisms behind HIV-mediated neuropathogenesis remain the subject of active research. We hypothesized that HIV-1 gp120 clade B and C proteins may exert differential proliferation, cell survival and NeuroAIDS effects in human astrocytoma cells via the Unfolded Protein Response, an endoplasmic reticulum- based cytoprotective mechanism. The differential effect of gp120 clade B and C was evaluated using for the first time a Tandem Mass Tag isobaric labeling quantitative proteomic approach. Flow cytometry analyses were performed for cell cycle and cell death identification. Among the proteins differentiated by HIV-1 gp120 proteins figure cytoskeleton, oxidative stress, UPR markers and numerous glycolytic metabolism enzymes. Our results demonstrate that HIV-1 gp120 B induced migration, proliferative and protective responses granted by the expression of GRP78, while HIV-1 gp120 C induced the expression of key inflammatory and pro-apoptotic markers. These novel findings put forward the first evidence that GRP78 is a key player in HIV-1 clade B and C neuropathogenic discrepancies and can be used as a novel target for immunotherapies.