Cargando…
The golgin protein Coy1 functions in intra-Golgi retrograde transport and interacts with the COG complex and Golgi SNAREs
Extended coiled-coil proteins of the golgin family play prominent roles in maintaining the structure and function of the Golgi complex. Here we further investigate the golgin protein Coy1 and document its function in retrograde transport between early Golgi compartments. Cells that lack Coy1 display...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The American Society for Cell Biology
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5620376/ https://www.ncbi.nlm.nih.gov/pubmed/28794270 http://dx.doi.org/10.1091/mbc.E17-03-0137 |
Sumario: | Extended coiled-coil proteins of the golgin family play prominent roles in maintaining the structure and function of the Golgi complex. Here we further investigate the golgin protein Coy1 and document its function in retrograde transport between early Golgi compartments. Cells that lack Coy1 displayed a reduced half-life of the Och1 mannosyltransferase, an established cargo of intra-Golgi retrograde transport. Combining the coy1Δ mutation with deletions in other putative retrograde golgins (sgm1Δ and rud3Δ) caused strong glycosylation and growth defects and reduced membrane association of the conserved oligomeric Golgi (COG) complex. In contrast, overexpression of COY1 inhibited the growth of mutant strains deficient in fusion activity at the Golgi (sed5-1 and sly1-ts). To map Coy1 protein interactions, coimmunoprecipitation experiments revealed an association with the COG complex and with intra-Golgi SNARE proteins. These physical interactions are direct, as Coy1 was efficiently captured in vitro by Lobe A of the COG complex and the purified SNARE proteins Gos1, Sed5, and Sft1. Thus our genetic, in vivo, and biochemical data indicate a role for Coy1 in regulating COG complex-dependent fusion of retrograde-directed COPI vesicles. |
---|