Cargando…
Revisiting the Latency of Uridine Diphosphate-Glucuronosyltransferases (UGTs)—How Does the Endoplasmic Reticulum Membrane Influence Their Function?
Uridine diphosphate-glucuronosyltransferases (UGTs) are phase 2 conjugation enzymes mainly located in the endoplasmic reticulum (ER) of the liver and many other tissues, and can be recovered in artificial ER membrane preparations (microsomes). They catalyze glucuronidation reactions in various aglyc...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5620573/ https://www.ncbi.nlm.nih.gov/pubmed/28867809 http://dx.doi.org/10.3390/pharmaceutics9030032 |
_version_ | 1783267614710038528 |
---|---|
author | Liu, Yuejian Coughtrie, Michael W. H. |
author_facet | Liu, Yuejian Coughtrie, Michael W. H. |
author_sort | Liu, Yuejian |
collection | PubMed |
description | Uridine diphosphate-glucuronosyltransferases (UGTs) are phase 2 conjugation enzymes mainly located in the endoplasmic reticulum (ER) of the liver and many other tissues, and can be recovered in artificial ER membrane preparations (microsomes). They catalyze glucuronidation reactions in various aglycone substrates, contributing significantly to the body’s chemical defense mechanism. There has been controversy over the last 50 years in the UGT field with respect to the explanation for the phenomenon of latency: full UGT activity revealed by chemical or physical disruption of the microsomal membrane. Because latency can lead to inaccurate measurements of UGT activity in vitro, and subsequent underprediction of drug clearance in vivo, it is important to understand the mechanisms behind this phenomenon. Three major hypotheses have been advanced to explain UGT latency: compartmentation, conformation, and adenine nucleotide inhibition. In this review, we discuss the evidence behind each hypothesis in depth, and suggest some additional studies that may reveal more information on this intriguing phenomenon. |
format | Online Article Text |
id | pubmed-5620573 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-56205732017-10-03 Revisiting the Latency of Uridine Diphosphate-Glucuronosyltransferases (UGTs)—How Does the Endoplasmic Reticulum Membrane Influence Their Function? Liu, Yuejian Coughtrie, Michael W. H. Pharmaceutics Review Uridine diphosphate-glucuronosyltransferases (UGTs) are phase 2 conjugation enzymes mainly located in the endoplasmic reticulum (ER) of the liver and many other tissues, and can be recovered in artificial ER membrane preparations (microsomes). They catalyze glucuronidation reactions in various aglycone substrates, contributing significantly to the body’s chemical defense mechanism. There has been controversy over the last 50 years in the UGT field with respect to the explanation for the phenomenon of latency: full UGT activity revealed by chemical or physical disruption of the microsomal membrane. Because latency can lead to inaccurate measurements of UGT activity in vitro, and subsequent underprediction of drug clearance in vivo, it is important to understand the mechanisms behind this phenomenon. Three major hypotheses have been advanced to explain UGT latency: compartmentation, conformation, and adenine nucleotide inhibition. In this review, we discuss the evidence behind each hypothesis in depth, and suggest some additional studies that may reveal more information on this intriguing phenomenon. MDPI 2017-08-30 /pmc/articles/PMC5620573/ /pubmed/28867809 http://dx.doi.org/10.3390/pharmaceutics9030032 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Liu, Yuejian Coughtrie, Michael W. H. Revisiting the Latency of Uridine Diphosphate-Glucuronosyltransferases (UGTs)—How Does the Endoplasmic Reticulum Membrane Influence Their Function? |
title | Revisiting the Latency of Uridine Diphosphate-Glucuronosyltransferases (UGTs)—How Does the Endoplasmic Reticulum Membrane Influence Their Function? |
title_full | Revisiting the Latency of Uridine Diphosphate-Glucuronosyltransferases (UGTs)—How Does the Endoplasmic Reticulum Membrane Influence Their Function? |
title_fullStr | Revisiting the Latency of Uridine Diphosphate-Glucuronosyltransferases (UGTs)—How Does the Endoplasmic Reticulum Membrane Influence Their Function? |
title_full_unstemmed | Revisiting the Latency of Uridine Diphosphate-Glucuronosyltransferases (UGTs)—How Does the Endoplasmic Reticulum Membrane Influence Their Function? |
title_short | Revisiting the Latency of Uridine Diphosphate-Glucuronosyltransferases (UGTs)—How Does the Endoplasmic Reticulum Membrane Influence Their Function? |
title_sort | revisiting the latency of uridine diphosphate-glucuronosyltransferases (ugts)—how does the endoplasmic reticulum membrane influence their function? |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5620573/ https://www.ncbi.nlm.nih.gov/pubmed/28867809 http://dx.doi.org/10.3390/pharmaceutics9030032 |
work_keys_str_mv | AT liuyuejian revisitingthelatencyofuridinediphosphateglucuronosyltransferasesugtshowdoestheendoplasmicreticulummembraneinfluencetheirfunction AT coughtriemichaelwh revisitingthelatencyofuridinediphosphateglucuronosyltransferasesugtshowdoestheendoplasmicreticulummembraneinfluencetheirfunction |