Cargando…
Obstacle Recognition Based on Machine Learning for On-Chip LiDAR Sensors in a Cyber-Physical System
Collision avoidance is an important feature in advanced driver-assistance systems, aimed at providing correct, timely and reliable warnings before an imminent collision (with objects, vehicles, pedestrians, etc.). The obstacle recognition library is designed and implemented to address the design and...
Autores principales: | Castaño, Fernando, Beruvides, Gerardo, Haber, Rodolfo E., Artuñedo, Antonio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5620580/ https://www.ncbi.nlm.nih.gov/pubmed/28906450 http://dx.doi.org/10.3390/s17092109 |
Ejemplares similares
-
Self-Tuning Method for Increased Obstacle Detection Reliability Based on Internet of Things LiDAR Sensor Models
por: Castaño, Fernando, et al.
Publicado: (2018) -
Autonomous aerial obstacle avoidance using LiDAR sensor fusion
por: Liang, Qing, et al.
Publicado: (2023) -
LiDAR Intensity Completion: Fully Exploiting the Message from LiDAR Sensors
por: Dai, Weichen, et al.
Publicado: (2022) -
Unifying Obstacle Detection, Recognition, and Fusion Based on the Polarization Color Stereo Camera and LiDAR for the ADAS
por: Long, Ningbo, et al.
Publicado: (2022) -
A CMOS Optoelectronic Receiver IC with an On-Chip Avalanche Photodiode for Home-Monitoring LiDAR Sensors
por: Joo, Ji-Eun, et al.
Publicado: (2021)