Cargando…
A False Alarm Reduction Method for a Gas Sensor Based Electronic Nose
Electronic noses (E-Noses) are becoming popular for food and fruit quality assessment due to their robustness and repeated usability without fatigue, unlike human experts. An E-Nose equipped with classification algorithms and having open ended classification boundaries such as the k-nearest neighbor...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5620598/ https://www.ncbi.nlm.nih.gov/pubmed/28895910 http://dx.doi.org/10.3390/s17092089 |
_version_ | 1783267620654415872 |
---|---|
author | Rahman, Mohammad Mizanur Charoenlarpnopparut, Chalie Suksompong, Prapun Toochinda, Pisanu Taparugssanagorn, Attaphongse |
author_facet | Rahman, Mohammad Mizanur Charoenlarpnopparut, Chalie Suksompong, Prapun Toochinda, Pisanu Taparugssanagorn, Attaphongse |
author_sort | Rahman, Mohammad Mizanur |
collection | PubMed |
description | Electronic noses (E-Noses) are becoming popular for food and fruit quality assessment due to their robustness and repeated usability without fatigue, unlike human experts. An E-Nose equipped with classification algorithms and having open ended classification boundaries such as the k-nearest neighbor (k-NN), support vector machine (SVM), and multilayer perceptron neural network (MLPNN), are found to suffer from false classification errors of irrelevant odor data. To reduce false classification and misclassification errors, and to improve correct rejection performance; algorithms with a hyperspheric boundary, such as a radial basis function neural network (RBFNN) and generalized regression neural network (GRNN) with a Gaussian activation function in the hidden layer should be used. The simulation results presented in this paper show that GRNN has more correct classification efficiency and false alarm reduction capability compared to RBFNN. As the design of a GRNN and RBFNN is complex and expensive due to large numbers of neuron requirements, a simple hyperspheric classification method based on minimum, maximum, and mean (MMM) values of each class of the training dataset was presented. The MMM algorithm was simple and found to be fast and efficient in correctly classifying data of training classes, and correctly rejecting data of extraneous odors, and thereby reduced false alarms. |
format | Online Article Text |
id | pubmed-5620598 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-56205982017-10-03 A False Alarm Reduction Method for a Gas Sensor Based Electronic Nose Rahman, Mohammad Mizanur Charoenlarpnopparut, Chalie Suksompong, Prapun Toochinda, Pisanu Taparugssanagorn, Attaphongse Sensors (Basel) Article Electronic noses (E-Noses) are becoming popular for food and fruit quality assessment due to their robustness and repeated usability without fatigue, unlike human experts. An E-Nose equipped with classification algorithms and having open ended classification boundaries such as the k-nearest neighbor (k-NN), support vector machine (SVM), and multilayer perceptron neural network (MLPNN), are found to suffer from false classification errors of irrelevant odor data. To reduce false classification and misclassification errors, and to improve correct rejection performance; algorithms with a hyperspheric boundary, such as a radial basis function neural network (RBFNN) and generalized regression neural network (GRNN) with a Gaussian activation function in the hidden layer should be used. The simulation results presented in this paper show that GRNN has more correct classification efficiency and false alarm reduction capability compared to RBFNN. As the design of a GRNN and RBFNN is complex and expensive due to large numbers of neuron requirements, a simple hyperspheric classification method based on minimum, maximum, and mean (MMM) values of each class of the training dataset was presented. The MMM algorithm was simple and found to be fast and efficient in correctly classifying data of training classes, and correctly rejecting data of extraneous odors, and thereby reduced false alarms. MDPI 2017-09-12 /pmc/articles/PMC5620598/ /pubmed/28895910 http://dx.doi.org/10.3390/s17092089 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Rahman, Mohammad Mizanur Charoenlarpnopparut, Chalie Suksompong, Prapun Toochinda, Pisanu Taparugssanagorn, Attaphongse A False Alarm Reduction Method for a Gas Sensor Based Electronic Nose |
title | A False Alarm Reduction Method for a Gas Sensor Based Electronic Nose |
title_full | A False Alarm Reduction Method for a Gas Sensor Based Electronic Nose |
title_fullStr | A False Alarm Reduction Method for a Gas Sensor Based Electronic Nose |
title_full_unstemmed | A False Alarm Reduction Method for a Gas Sensor Based Electronic Nose |
title_short | A False Alarm Reduction Method for a Gas Sensor Based Electronic Nose |
title_sort | false alarm reduction method for a gas sensor based electronic nose |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5620598/ https://www.ncbi.nlm.nih.gov/pubmed/28895910 http://dx.doi.org/10.3390/s17092089 |
work_keys_str_mv | AT rahmanmohammadmizanur afalsealarmreductionmethodforagassensorbasedelectronicnose AT charoenlarpnopparutchalie afalsealarmreductionmethodforagassensorbasedelectronicnose AT suksompongprapun afalsealarmreductionmethodforagassensorbasedelectronicnose AT toochindapisanu afalsealarmreductionmethodforagassensorbasedelectronicnose AT taparugssanagornattaphongse afalsealarmreductionmethodforagassensorbasedelectronicnose AT rahmanmohammadmizanur falsealarmreductionmethodforagassensorbasedelectronicnose AT charoenlarpnopparutchalie falsealarmreductionmethodforagassensorbasedelectronicnose AT suksompongprapun falsealarmreductionmethodforagassensorbasedelectronicnose AT toochindapisanu falsealarmreductionmethodforagassensorbasedelectronicnose AT taparugssanagornattaphongse falsealarmreductionmethodforagassensorbasedelectronicnose |