Cargando…
A Hybrid Approach to Detect Driver Drowsiness Utilizing Physiological Signals to Improve System Performance and Wearability
Driver drowsiness is a major cause of fatal accidents, injury, and property damage, and has become an area of substantial research attention in recent years. The present study proposes a method to detect drowsiness in drivers which integrates features of electrocardiography (ECG) and electroencephal...
Autores principales: | Awais, Muhammad, Badruddin, Nasreen, Drieberg, Micheal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5620623/ https://www.ncbi.nlm.nih.gov/pubmed/28858220 http://dx.doi.org/10.3390/s17091991 |
Ejemplares similares
-
Drowsiness Detection Using Ocular Indices from EEG Signal
por: Tarafder, Sreeza, et al.
Publicado: (2022) -
A CNN-Based Wearable System for Driver Drowsiness Detection
por: Li, Yongkai, et al.
Publicado: (2023) -
Assessment of the Potential of Wrist-Worn Wearable Sensors for Driver Drowsiness Detection
por: Kundinger, Thomas, et al.
Publicado: (2020) -
An Efficient Approach for Driver Drowsiness Detection at Moderate Drowsiness Level Based on Electroencephalography Signal and Vehicle Dynamics Data
por: Houshmand, Sara, et al.
Publicado: (2022) -
Vehicle driver drowsiness detection method using wearable EEG based on convolution neural network
por: Zhu, Miankuan, et al.
Publicado: (2021)