Cargando…
Methods for Real-Time Prediction of the Mode of Travel Using Smartphone-Based GPS and Accelerometer Data
We propose and compare combinations of several methods for classifying transportation activity data from smartphone GPS and accelerometer sensors. We have two main objectives. First, we aim to classify our data as accurately as possible. Second, we aim to reduce the dimensionality of the data as muc...
Autores principales: | Martin, Bryan D., Addona, Vittorio, Wolfson, Julian, Adomavicius, Gediminas, Fan, Yingling |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5620731/ https://www.ncbi.nlm.nih.gov/pubmed/28885550 http://dx.doi.org/10.3390/s17092058 |
Ejemplares similares
-
Identifying Active Travel Behaviors in Challenging Environments Using GPS, Accelerometers, and Machine Learning Algorithms
por: Ellis, Katherine, et al.
Publicado: (2014) -
Assessing and Mapping of Road Surface Roughness based on GPS and Accelerometer Sensors on Bicycle-Mounted Smartphones
por: Zang, Kaiyue, et al.
Publicado: (2018) -
An open-source tool to identify active travel from hip-worn accelerometer, GPS and GIS data
por: Procter, Duncan S., et al.
Publicado: (2018) -
Using Accelerometer and GPS Data for Real-Life Physical Activity Type Detection
por: Allahbakhshi, Hoda, et al.
Publicado: (2020) -
Application of machine learning to predict transport modes from GPS, accelerometer, and heart rate data
por: Giri, Santosh, et al.
Publicado: (2022)